
GPU Coder™
User's Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

GPU Coder™ User's Guide
© COPYRIGHT 2017–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 1.0 (Release 2017b)
March 2018 Online only Revised for Version 1.1 (Release 2018a)
September 2018 Online only Revised for Version 1.2 (Release 2018b)
March 2019 Online only Revised for Version 1.3 (Release 2019a)
September 2019 Online only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 1.5 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions Supported for GPU Code Generation
1

MATLAB Language Features Support for GPU Coder 1-2
Code Generation for Variable-Size Arrays . 1-2
Structure Definition for Code Generation . 1-4
Unsupported Features . 1-5

Supported Functions . 1-6

Kernel Creation
2

Kernels from Element-Wise Loops . 2-2
Element-Wise Math Example . 2-2
Preparing myFun for Code Generation . 2-2
Generated CUDA Code . 2-3
Limitations . 2-3

Kernels from Scatter-Gather Type Operations . 2-4
Vector Sum Example . 2-5
Prepare vecSum for Kernel Creation . 2-5
Generated CUDA Code . 2-5
1-D Reduction Operations on the GPU . 2-6

Kernels from Library Calls . 2-8

cuBLAS Example . 2-10
Generated CUDA Code . 2-10
Prepare blas_gemm for Kernel Creation . 2-11

cuSOLVER Example . 2-12
Prepare backslash for Kernel Creation . 2-12
Generated CUDA Code . 2-12
cuSOLVER Standalone Code . 2-13

FFT Example . 2-15
Prepare myFFT for Kernel Creation . 2-15
Generated CUDA Code . 2-16

Thrust Example . 2-17
Generated CUDA Code . 2-17

iii

Contents

Legacy Code Integration . 2-18
coder.ceval for GPU Coder . 2-18
Legacy Code Example . 2-18
Generate CUDA Code . 2-20
Generated Code . 2-20

Design Patterns . 2-22
Stencil Processing . 2-22
Matrix-Matrix Processing . 2-22

GPU Memory Allocation and Minimization . 2-24
Discrete and Managed Modes . 2-24
Memory Minimization . 2-24

Support for GPU Arrays . 2-26
Considerations . 2-26

Troubleshooting
3

Workflow . 3-2

Code Generation Reports . 3-5
Report Generation . 3-5
Report Location . 3-6
Errors and Warnings . 3-6
Files and Functions . 3-6
MATLAB Source . 3-6
Generated Code . 3-8
MATLAB Variables . 3-8
Tracing Code . 3-9
Code Insights . 3-10
Additional Reports . 3-10
Report Limitations . 3-10

Trace Between Generated CUDA Code and MATLAB Source Code 3-11
Generate Traceability Tags . 3-11
Format of Traceability Tags . 3-13
Traceability Tag Limitations . 3-14

Generating a GPU Code Metrics Report for Code Generated from MATLAB
Code . 3-15

Example GPU Code Metrics Report . 3-15
Explore the code metrics report . 3-16
Limitations . 3-17

Kernel Analysis . 3-18
Mapping Nested Loops to Kernels . 3-18
For-Loops with Break . 3-19
Dependence Analysis Parallel Loop Check Fails 3-19
Logical Indexing of Arrays . 3-20
Unsupported Functions . 3-20

iv Contents

Loop Interchange . 3-20

Memory Bottleneck Analysis . 3-22
Data Alignment . 3-22
Small Data Sizes . 3-22
Too Many cudaMemcpys . 3-22
Constant Inputs . 3-22
Stack Memory Usage . 3-23

Analyze Execution Profiles of the Generated Code 3-24
Create a Design File . 3-24
Generate the Execution Profiling Report . 3-24

Analysis with NVIDIA Profiler . 3-27
Not Enough Parallelism . 3-27
Too Many Local per-Thread Registers . 3-27

GPU Coder Limitations . 3-28
General Limitations . 3-28
Function Limitations . 3-28
Unsupported CUDA Features . 3-28

Deep Learning
4

Workflow . 4-2

Supported Networks and Layers . 4-4
Supported Pretrained Networks . 4-4
Supported Layers . 4-6
Supported Classes . 4-12

Generated CNN Class Hierarchy . 4-14

Load Pretrained Networks for Code Generation . 4-15
Load a Network by Using coder.loadDeepLearningNetwork 4-15
Specify a Network Object for Code Generation . 4-16

Code Generation for Deep Learning Networks by Using cuDNN 4-17
Generate Code and Classify Images by Using GoogLeNet 4-17
Requirements . 4-17
Load Pretrained Network . 4-17
Create an Entry-Point Function . 4-18
Code Generation by Using codegen . 4-19
Generate Code by Using the App . 4-22
Code Generation by Using cnncodegen . 4-22
Generated Makefile . 4-24
Run the Generated MEX . 4-24

Code Generation for Deep Learning Networks by Using TensorRT 4-26
Generate Code and Classify Images by Using GoogLeNet 4-26
Requirements . 4-26

v

Load Pretrained Network . 4-27
Create an Entry-Point Function . 4-28
Code Generation by Using codegen . 4-28
Generate Code by Using the App . 4-31
Code Generation by Using cnncodegen . 4-32
Generated Makefile . 4-33
Run the Generated MEX . 4-33

Code Generation for Deep Learning Networks Targeting ARM Mali GPUs
. 4-36

Requirements . 4-36
Load Pretrained Network . 4-36
Code Generation by Using cnncodegen . 4-37
Limitations . 4-39

Data Layout Considerations in Deep Learning . 4-40
Data Layout Format for CNN . 4-40
Data Layout Format for LSTM . 4-41

Targeting Embedded GPU Devices
5

Build and Run an Executable on NVIDIA Hardware 5-2
Learning Objectives . 5-2
Tutorial Prerequisites . 5-2
Example: Vector Addition . 5-2
Create a Live Hardware Connection Object . 5-3
Generate CUDA Executable Using GPU Coder . 5-3
Run the Executable and Verify the Results . 5-5

Build and Run an Executable on NVIDIA Hardware Using GPU Coder App
. 5-7

Learning Objectives . 5-7
Tutorial Prerequisites . 5-7
Example: Vector Addition . 5-8
Custom Main File . 5-8
GPU Coder App . 5-9
Run the Executable and Verify the Results . 5-12

Relocate Generated Code to Another Development Environment 5-14
Package Generated Code Using the GPU Coder 5-14
Specify packNGo Options . 5-22

vi Contents

Functions Supported for GPU Code
Generation

• “MATLAB Language Features Support for GPU Coder” on page 1-2
• “Supported Functions” on page 1-6

1

MATLAB Language Features Support for GPU Coder
GPU Coder™ supports many of the MATLAB® language features supported by MATLAB Coder™, see
“MATLAB Language Features Supported for C/C++ Code Generation” (MATLAB Coder). However,
some features may be supported in a restricted mode and others not supported. In the following
sections, we highlight some of the important features that affect GPU code generation and then list
the features that not supported by GPU Coder.

A common and important consideration is variable-size matrices support. This feature can really
affect the way CUDA® kernels are created and the following discussion describes the feature and
considerations for GPU code generation.

Code Generation for Variable-Size Arrays
For code generation, an array dimension is fixed-size or variable-size. If the code generator can
determine the size of an array and that the size of the array does not change at run time, then the
dimension is fixed-size. When all dimensions of an array are fixed-size, the array is a fixed-size array.
In the following example, Z is a fixed-size array.

function Z = myfcn()
Z = zeros(1,4);
end

If the code generator cannot determine the size of an array or the code generator determines that the
size changes, then the dimension is variable-size. When at least one of its dimensions is variable-size,
an array is a variable-size array.

A variable-size dimension is either bounded or unbounded. A bounded dimension has a fixed upper
size. An unbounded dimension does not have a fixed upper size.

In the following example, the second dimension of Z is bounded, variable-size. It has an upper bound
of 32.

function s = myfcn(n)
if (n > 0)
 Z = zeros(1,4);
else
 Z = zeros(1,32);
end
s = length(Z);

In the following example, if the value of n is unknown at compile time, then the second dimension of Z
is unbounded.

function s = myfcn(n)
Z = rand(1,n);
s = sum(Z);
end

You can define variable-size arrays by:

• Using constructors, such as zeros or ones, with a nonconstant size value
• Assigning multiple, constant sizes to the same variable before using it
• Using loops to grow the dimensions of variables

1 Functions Supported for GPU Code Generation

1-2

• Declaring all instances of a variable to be variable-size by using coder.typeof or
coder.varsize functions. For example, coder.typeof(1, [12,1],[true, false]) and
coder.varsize(1, [Inf,1], [true, false]).

For more information, see “Define Variable-Size Data for Code Generation” (MATLAB Coder).

Enabling and Disabling Support for Variable-Size Arrays

Code Generation Behavior

For variable-size arrays that are bounded, GPU Coder maps these bounded variables to the GPU and
CUDA kernels are created. To specify upper bounds for variable-size arrays, see “Specify Upper
Bounds for Variable-Size Arrays” (MATLAB Coder).

For unbounded, variable-size arrays and variable-size arrays whose size is greater than or equal to a
DynamicMemoryAllocation threshold, GPU Coder does not map these variables to the GPU and
kernels are not created. The code generator allocates memory dynamically on the CPU heap. GPU
Coder issues a warning for unbounded variables in the build log and code generation report.

By default, the code generator is set to use dynamic memory allocation for variable-size arrays whose
size is greater than or equal to the threshold with a threshold value of 2 GB. To change these settings:

• In the configuration object, set the DynamicMemoryAllocation to Threshold and
DynamicMemoryAllocationThreshold to a non-negative integer.

• In the GPU Coder app, in the Memory settings, set Dynamic memory allocation to For
arrays with max size at or above threshold and the Dynamic memory allocation
threshold to a non-negative integer.

Variable-Size Arrays in a Code Generation Report

You can tell whether an array is fixed-size or variable-size by looking at the Size column of the
Variables tab in a code generation report.

A colon (:) indicates that a dimension is variable-size. A question mark (?) indicates that the size is
unbounded. For example, a size of 1-by-:? indicates that the size of the first dimension is fixed-size 1
and the size of the second dimension is unbounded, variable-size. An asterisk (*) indicates that the
code generator produced a variable-size array, but the size of the array does not change during
execution.

 MATLAB Language Features Support for GPU Coder

1-3

Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use structures differently
than you normally would when running your code in the MATLAB environment. For code generation,
you must first create a scalar template version of the structure before growing it into an array. The
code generation inference engine uses the type of this scalar value as the base type of the array. To
generate standalone code for MATLAB structures, you are restricted to the following operations:

• Define structures as local and persistent variables by assignment and using the struct function
• Index structure fields using dot notation
• Define primary or entry-point function inputs as structures
• Pass structures to local functions

For more information, see “Structure Definition for Code Generation” (MATLAB Coder).

Note GPU Coder generates more efficient code when you use struct of arrays instead of array of
structs.

Example

This example shows how to write a MATLAB function that uses structure arrays so that it is suitable
for code generation. First, you must specify the base element using the struct function.

tempS = struct('a',0,'b',0);
numE = 2000;
AofS = repmat(tempS,numE,1);

In MATLAB, when building up a structure array, you would typically add fields as you go. This
"dynamic" style of building structures is not supported for code generation. One reason is that it is
possible in MATLAB to have different structure fields for two different elements of a structure array,
which conflicts with the more static approach of type inference. Therefore, you must specify the base
scalar element first, and then grow a structure array from this fully specified element. This method
guarantees that two elements of a structure array always share type (fields).

for ind = 1:numE
 AofS(ind).a = rand;
 AofS(ind).b = rand;
end

Now, you can define an entry-point function mStructSupport that takes AofS as input. The local
function arrayOp doubles AofS.b and stores the result in AofS.a.

function [V] = mStructSupport(AofS)
 V = arrayOp(AofS);

end

function AofS = arrayOp(AofS)
 n = numel(AofS);

 for i = 1:n
 AofS(i).a = AofS(i).b * 2;
 end

1 Functions Supported for GPU Code Generation

1-4

end

You can use any of the methods described in “Code Generation by Using the GPU Coder App” to
generate CUDA code for this example.

Unsupported Features
The following list contains the features that are not currently supported.

• Memory integrity checks, see “Control Run-Time Checks” (MATLAB Coder).
• Array bound and dimension checks.
• break statements.
• Function handles are supported only when defined within another function and not as entry-point

parameter.
• Anonymous functions are supported only when defined within another function and not as an

entry-point parameter.
• MATLAB classes.

 MATLAB Language Features Support for GPU Coder

1-5

Supported Functions
You can generate CUDA code for a subset of MATLAB built-in functions and toolbox functions that
you call from MATLAB code. These functions appear in alphabetical order in the following table.
Some of these functions especially from the Image Processing Toolbox™ contain calls to other
functions, GPU Coder does not create CUDA kernels for all the loops and functions that the parent
function relies on. However, GPU Coder does generate C/C++ code for sections that cannot be
mapped to the GPU. The results from the code generated for functions in this list are also numerically
equivalent (within tolerance) to its MATLAB counterpart. See, “Numerical Differences Between CPU
and GPU”.

Name Product Usage Notes and Limitations
abs MATLAB No known limitation
accumneg Fixed-Point

Designer™
No known limitation

accumpos Fixed-Point
Designer

No known limitation

acos MATLAB Generates an error during simulation and returns NaN in generated
code when the input value X is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(X).

acosd MATLAB No known limitation
acosh MATLAB Generates an error during simulation and returns NaN in generated

code when the input value X is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(X).

acot MATLAB No known limitation
acotd MATLAB No known limitation
activations Deep Learning

Toolbox™
• GPU code generation supports the following syntaxes:

• features = activations(net,X,layer)
• features = activations(__,Name,Value)

• The input X must not have variable size. The size must be fixed at
code generation time.

• GPU code generation for the activations function supports inputs
that are defined as half-precision floating point data types. For more
information, see half.

• The layer argument must be a compile-time constant.
• Only the 'OutputAs' and 'MiniBatchSize' name-value pair

arguments are supported for code generation. The value of the
'OutputAs' name-value pair must be 'channels'.

• All name-value pairs must be compile-time constants.
adaptthresh Image Processing

Toolbox
The ForegroundPolarity and Statistic arguments must be
compile-time constants.

1 Functions Supported for GPU Code Generation

1-6

Name Product Usage Notes and Limitations
affine2d Image Processing

Toolbox
When generating code, you can only specify singular objects—arrays of
objects are not supported.

alexnet Deep Learning
Toolbox

• For code generation, you can load the network by using the syntax
net = alexnet or by passing the alexnet function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('alexnet').

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax alexnet('Weights','none') is not supported for
GPU code generation.

and MATLAB No known limitation
angle MATLAB No known limitation
asin MATLAB Generates an error during simulation and returns NaN in generated

code when the input value X is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(X).

asind MATLAB No known limitation
asinh MATLAB No known limitation
atan MATLAB No known limitation
atan2 MATLAB If you use atan2 with single type and double type operands, the

generated code might not produce the same result as MATLAB. See
“Binary Element-Wise Operations with Single and Double Operands”
(MATLAB Coder).

atan2d MATLAB If you use atan2d with single type and double type operands, the
generated code might not produce the same result as MATLAB. See
“Binary Element-Wise Operations with Single and Double Operands”
(MATLAB Coder).

atand MATLAB No known limitation
atanh MATLAB Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

bin2dec MATLAB • Input text must be specified as a character array. Cell arrays are not
supported.

• When the input is empty, the answer does not match the answer in
MATLAB.

bitand MATLAB No known limitation
bitcmp MATLAB No known limitation
bitget MATLAB No known limitation
bitor MATLAB No known limitation
bitrevorder Signal Processing

Toolbox™
No known limitation

 Supported Functions

1-7

Name Product Usage Notes and Limitations
bitset MATLAB No known limitation
bitshift MATLAB No known limitation
bitsll Fixed-Point

Designer
Generated code might not handle out of range shifting.

bitsra Fixed-Point
Designer

Generated code might not handle out of range shifting.

bitsrl Fixed-Point
Designer

Generated code might not handle out of range shifting.

bitxor MATLAB No known limitation
blkdiag MATLAB No known limitation
bsxfun MATLAB Code generation does not support sparse matrix inputs for this

function.
bwareaopen Image Processing

Toolbox
• BW must be a 2-D binary image. N-D arrays are not supported.
• conn must be one of the two-dimensional connectivities (4 or 8) or a

3-by-3 matrix. The 3-D connectivities (6, 18, and 26) are not
supported. Matrices of size 3-by-3-by-...-by-3 are not supported.

• conn must be a compile-time constant.
bwboundaries Image Processing

Toolbox
• The parameter conn must be a compile-time constant.
• The parameter options must be a compile-time constant.
• The return value A can only be a full matrix, not a sparse matrix.

bwconncomp Image Processing
Toolbox

• bwconncomp only supports 2-D inputs.
• The conn arguments must be a compile-time constant and the only

connectivities supported are 4 or 8. You can also specify connectivity
as a 3-by-3 matrix, but it can only be [0 1 0;1 1 1;0 1 0] or
ones(3)

• The PixelIdxList field in the CC struct return value is not
supported.

bwdist Image Processing
Toolbox

When generating code, the optional second input argument, method,
must be a compile-time constant. Input images must have fewer than
232 pixels.

bweuler Image Processing
Toolbox

No known limitation

bwlabel Image Processing
Toolbox

When generating code, the parameter n must be a compile-time
constant.

bwlookup Image Processing
Toolbox

When generating code, specify an input image of class logical.

bwmorph Image Processing
Toolbox

When generating code, the character vectors or string scalars
specifying the operation must be a compile-time constant and, for best
results, the input image must be of class logical.

1 Functions Supported for GPU Code Generation

1-8

Name Product Usage Notes and Limitations
bwperim Image Processing

Toolbox
• bwperim supports only 2-D images.
• bwperim does not support a no-output-argument syntax.
• The connectivity matrix input argument, conn, must be a constant.

bwselect Image Processing
Toolbox

• When generating code, bwselect supports only these syntaxes:

• BW2 = bwselect(BW, c, r)
• [BW2, idx] = bwselect(BW, c, r)
• BW2 = bwselect(BW, c, r, n)
• [BW2, idx] = bwselect(BW, c, r, n)

• In addition, the optional fourth input argument, n, must be a
compile-time constant.

bwtracebound
ary

Image Processing
Toolbox

When generating code, the dir, fstep, and conn arguments must be
compile-time constants.

bwunpack Image Processing
Toolbox

When generating code, all input arguments must be compile-time
constants.

cart2pol MATLAB No known limitation
cast MATLAB Enumeration inputs must be scalar valued at compile time. Arrays of

enumerations are not supported.
ceil MATLAB Code generation does not support char or logical data types for X.
chol MATLAB Only the first two syntaxes chol(A) and chol(A,triangle) with one

output argument are supported.
circshift MATLAB Code generation does not support tables and cells for the first input

argument.

 Supported Functions

1-9

Name Product Usage Notes and Limitations
classify Deep Learning

Toolbox
• GPU code generation supports the following syntaxes:

• [YPred,scores] = classify(net,X)
• [YPred,scores] = classify(net,sequences)
• [YPred,scores] = classify(__,Name,Value)

• GPU code generation for the classify function is not supported for
regression networks and networks with multiple outputs.

• GPU code generation for the classify function supports inputs
that are defined as half-precision floating point data types. For more
information, see half.

• The input X must not have variable size. The size must be fixed at
code generation time.

• GPU code generation supports only vector sequences. The sequence
length can be variable sized. The feature dimension must be fixed at
code generation time.

• Only the 'MiniBatchSize', 'SequenceLength',
'SequencePaddingDirection', and 'SequencePaddingValue'
name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• Only the 'longest' and 'shortest' option of the
'SequenceLength' name-value pair is supported for code
generation.

classUnderly
ing

MATLAB No known limitation

compan MATLAB No known limitation
complex MATLAB No known limitation
conj MATLAB No known limitation
conndef Image Processing

Toolbox
When generating code, the num_dims and type arguments must be
compile-time constants.

conv MATLAB If the inputs have nonfinite values (inf or NaN), the results from the
generated code may not numerically match MATLAB simulation.

conv2 MATLAB If the inputs have nonfinite values (inf or NaN), the results from the
generated code may not numerically match MATLAB simulation.

cos MATLAB No known limitation
cosh MATLAB No known limitation
cot MATLAB No known limitation
coth MATLAB No known limitation
cross MATLAB • If supplied, dim must be a constant.

• Code generation does not support sparse matrix inputs for this
function.

csc MATLAB No known limitation
csch MATLAB No known limitation

1 Functions Supported for GPU Code Generation

1-10

Name Product Usage Notes and Limitations
ctranspose MATLAB No known limitation
cwt Wavelet Toolbox™ • Single- and double-precision input signal are supported. The

precision must be set at compile time.
• Timetable input signal is not supported.
• Only analytic Morse ('morse') and Morlet ('amor') wavelets are

supported.
• The following input arguments are not supported: Sampling period

(ts), PeriodLimits name-value pair, NumOctave name-value pair,
and FilterBank name-value pair.

• Scaling coefficient output and filter bank output are not supported.
• Plotting is not supported.

cummax MATLAB No known limitation
cummin MATLAB No known limitation
cumprod MATLAB • Logical inputs are not supported. Cast input to double first.

• Code generation does not support sparse matrix inputs for this
function.

cumsum MATLAB • Logical inputs are not supported. Cast input to double first.
• Code generation does not support sparse matrix inputs for this

function.
DAGNetwork Deep Learning

Toolbox
• Only the activations, predict, and classify methods are

supported.
• To create a DAGNetwork object for code generation, see “Load

Pretrained Networks for Code Generation” on page 4-15.
darknet19 Deep Learning

Toolbox
• For code generation, you can load the network by using the syntax

net = darknet19 or by passing the darknet19 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet19').

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax darknet19('Weights','none') is not supported for
GPU code generation.

darknet53 Deep Learning
Toolbox

• For code generation, you can load the network by using the syntax
net = darknet53 or by passing the darknet53 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet53').

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax darknet53('Weights','none') is not supported for
GPU code generation.

deg2rad MATLAB No known limitation
del2 MATLAB No known limitation

 Supported Functions

1-11

Name Product Usage Notes and Limitations
demosaic Image Processing

Toolbox
sensorAlignment must be a compile-time constant.

deeplabv3plu
sLayers

Deep Learning
Toolbox

For code generation, you must first create a DeepLab v3+ network by
using the deeplabv3plusLayers function. Then, use the
trainNetwork function on the resulting lgraph object to train the
network for segmentation. Once the network is trained and evaluated,
you can generate code for the deep learning network object using GPU
Coder.

densenet201 Deep Learning
Toolbox

• For code generation, you can load the network by using the syntax
net = densenet201 or by passing the densenet201 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('densenet201').

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax densenet201('Weights','none') is not supported
for GPU code generation.

det MATLAB Code generation does not support sparse matrix inputs for this
function.

diag MATLAB • If you supply k, then it must be a real and scalar integer value.
• For variable-size inputs that are variable-length vectors (1-by-: or :-

by-1), diag:

• Treats the input as a vector
• Returns a matrix with the input vector along the specified

diagonal
• For variable-size inputs that are not variable-length vectors, diag:

• Treats the input as a matrix
• Does not support inputs that are vectors at run time
• Returns a variable-length vector

If the input is variable-size (:m-by-:n) and has shape 0-by-0 at run
time, then the output is 0-by-1, not 0-by-0. However, if the input is a
constant size 0-by-0, then the output is [].

• For variable-size inputs that are not variable-length vectors (1-by-:
or :-by-1), diag treats the input as a matrix from which to extract a
diagonal vector. This behavior occurs even if the input array is a
vector at run time. To force diag to build a matrix from variable-size
inputs that are not 1-by-: or :-by-1, use:

• diag(x(:)) instead of diag(x)
• diag(x(:),k) instead of diag(x,k)

1 Functions Supported for GPU Code Generation

1-12

Name Product Usage Notes and Limitations
disparitySGM Computer Vision

Toolbox™
• The input images I1 and I2 must be rectified, same size, and of

same data type.
• GPU code generation supports the 'UniquenessThreshold' and

'disparityMap' name-value pairs.
• For very large inputs, the memory requirements of the algorithm

may exceed the GPU device limits. In such cases, consider reducing
the input size to proceed with code generation.

double MATLAB For string inputs with misplaced commas (commas that are not used as
thousands separators), generated code results can differ from MATLAB
results.

edge Image Processing
Toolbox

• The method, direction, and sigma arguments must be compile-
time constants.

• The 'approxcanny' method is not supported.
• Nonprogrammatic syntaxes are not supported. For example, if you

do not specify a return value, then edge displays an image. This
syntax is not supported with code generation.

exp MATLAB No known limitation
eye MATLAB • typename must be a built-in MATLAB numeric type. Does not

invoke the static eye method for other classes. For example,
eye(m, n, 'myclass') does not invoke myclass.eye(m,n).

• Size arguments must have a fixed size.
factorial MATLAB No known limitation
fft MATLAB No known limitation
fft2 MATLAB No known limitation
fftfilt Signal Processing

Toolbox
Digital filter objects are not supported for code generation.

fftn MATLAB The sz argument must have a fixed size.
fftshift MATLAB No known limitation
filter MATLAB • If supplied, dim must be a constant.

• See “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” (MATLAB Coder).

• If the inputs have nonfinite values (inf or NaN), the results from the
generated code may not numerically match MATLAB simulation.

filter2 MATLAB No known limitation
fitgeotrans Image Processing

Toolbox
• When generating code, the transformationType argument must

be a compile-time constant and only the following transformation
types are supported: 'nonreflectivesimilarity',
'similarity', 'affine', and 'projective'.

fix MATLAB Code generation does not support char or logical data types for X.
floor MATLAB Code generation does not support char or logical data types for X.
fspecial Image Processing

Toolbox
When generating code, all inputs must be constants at compilation
time.

 Supported Functions

1-13

Name Product Usage Notes and Limitations
gather MATLAB No known limitation
ge MATLAB No known limitation
getrangefrom
class

MATLAB No known limitation

googlenet Deep Learning
Toolbox

• For code generation, you can load the network by using the syntax
net = googlenet or by passing the googlenet function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('googlenet').

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax googlenet('Weights','none') is not supported for
GPU code generation.

gt MATLAB No known limitation
half MATLAB • CUDA compute capability of 5.3 or higher is required for generating

and executing code with half-precision data types.
• CUDA toolkit version of 10.0 or higher is required for generating

and executing code with half-precision data types.
• The memory allocation (malloc) mode for generating CUDA code

must be set to 'Discrete'.

For more information, see coder.gpuConfig.
• Half-precision complex data types are not supported for GPU code

generation.
• For GPU Code generation, half-precision matrix multiplication can

only be performed with real inputs.
• In MATLAB, the isobject function returns true with a half-

precision input. However, in generated code, this function returns
false.

• If your target hardware does not have native support for half-
precision, then half is used as a storage type, with arithmetic
operations performed in single precision.

• Some functions use half only as a storage type and the arithmetic is
always performed in single-precision, regardless of the target
hardware.

• Code generation for 32-bit targets is not supported if your MATLAB
code contains half-precision data types.

histeq Image Processing
Toolbox

When generating code, histeq does not support indexed images.

hough Image Processing
Toolbox

• The optional parameters 'Theta' and 'RhoResolution' must be
compile-time string constants.

• The optional Theta vector must have a bounded size.

1 Functions Supported for GPU Code Generation

1-14

Name Product Usage Notes and Limitations
houghlines Image Processing

Toolbox
The optional parameter names 'FillGap' and 'MinLength' must be
compile-time constants. Their associated values need not be compile-
time constants.

houghpeaks Image Processing
Toolbox

The optional parameter names 'Threshold' and 'NHoodSize' must
be compile-time constants. Their associated values need not be
compile-time constants.

hsv2rgb MATLAB No known limitation
hypot MATLAB If you use hypot with single type and double type operands, the

generated code might not produce the same result as MATLAB. See
“Binary Element-Wise Operations with Single and Double Operands”
(MATLAB Coder).

ifft MATLAB • Output is complex.
• Symmetry type 'symmetric' is not supported.
• For limitations related to variable-size data, see “Variable-Sizing

Restrictions for Code Generation of Toolbox Functions” (MATLAB
Coder).

ifft2 MATLAB Symmetry type 'symmetric' is not supported.
ifftn MATLAB • Symmetry type 'symmetric' is not supported.

• The sz argument must have a fixed size.
ifftshift MATLAB No known limitation
im2double MATLAB No known limitation
im2int16 Image Processing

Toolbox
No known limitation

im2single Image Processing
Toolbox

No known limitation

im2uint8 Image Processing
Toolbox

No known limitation

imabsdiff Image Processing
Toolbox

No known limitation

imadjust Image Processing
Toolbox

When generating code, imadjust does not support indexed images.

imag MATLAB No known limitation
imbinarize Image Processing

Toolbox
When generating code, all character vector input arguments must be
compile-time constants.

imbothat Image Processing
Toolbox

• The input image I must be 2-D or 3-D.
• The structuring element SE must be a compile-time constant.

imboxfilt Image Processing
Toolbox

When generating code, all character vector input arguments must be
compile-time constants.

imclearborde
r

Image Processing
Toolbox

• Supports only up to 3-D inputs.
• The optional second input argument, conn, must be a compile-time

constant.

 Supported Functions

1-15

Name Product Usage Notes and Limitations
imclose Image Processing

Toolbox
• The input image I must be 2-D or 3-D.
• The structuring element SE must be a compile-time constant.

imcomplement Image Processing
Toolbox

imcomplement does not support int64 and uint64 data types.

imcrop Image Processing
Toolbox

• The interactive syntaxes are not supported, including:

• J = imcrop
• J = imcrop(I)
• X2 = imcrop(X,cmap)
• J = imcrop(h)

• Indexed images are not supported, including the non-interactive
syntax X2 = imcrop(X,cmap,rect);

imdilate Image Processing
Toolbox

• The input image, IM, must be 2-D or 3-D.
• The structuring element argument SE must be a compile-time

constant.
• Packed binary input image (PACKOPT syntax) is not supported.
• For 3-D input images with more than three channels, only C/C++

code is generated.
• CUDA code is generated only for 1-D or 2-D structuring elements. If

the structuring element is 3-D, C/C++ code is generated. Code
generation is not supported for structuring elements with more than
three dimensions.

• For non-flat structuring elements, only C/C++ code is generated.

imerode Image Processing
Toolbox

imfill Image Processing
Toolbox

• The optional input arguments, conn and 'holes', must be compile-
time constants.

• imfill supports up to 3-D inputs only. (No N-D support.)
• The interactive syntax to select points, imfill(BW,0,CONN) is not

supported.
• With the locations input argument, once you select a format at

compile time, you cannot change it at run time. However, the
number of points in locations can be varied at run time.

1 Functions Supported for GPU Code Generation

1-16

Name Product Usage Notes and Limitations
imfilter Image Processing

Toolbox
• When generating code, the input image, A, must be 2-D or 3-D. The

value of the input argument, options, must be a compile-time
constant.

• If you specify a large kernel h, a kernel that contains large values, or
specify an image containing large values, you can see different
results between MATLAB and generated code using codegen for
floating point data types. This happens because of accumulation
errors due to different algorithm implementations.

• With CUDA toolkit v9.0, a bug in the NVIDIA® optimization causes
numerical mismatch between the results from the generated code
and MATLAB. As a workaround, turn off the optimization by passing
the following flags to the configuration object (cfg) before
generating the code.

cfg.GpuConfig.CompilerFlags = ‘-Xptxas -O0’

NVIDIA is expected to fix this bug in CUDA toolkit v9.1.
imgaussfilt Image Processing

Toolbox
• imgaussfilt does not support the FilterDomain parameter for

code generation. Filtering is always done in the 'spatial' domain
in generated code.

• When generating code, all character vector input arguments must
be compile-time constants.

imgradient3 Image Processing
Toolbox

When generating code, the input argument method must be a compile-
time constant.

imgradientxy
z

Image Processing
Toolbox

When generating code, the input argument method must be a compile-
time constant.

imhist Image Processing
Toolbox

• If the first input is a binary image, then n must be a scalar constant
of value 2 at compile time.

• Nonprogrammatic syntaxes are not supported. For example, the
syntax imhist(I), where imhist displays the histogram, is not
supported.

imhmax Image Processing
Toolbox

When generating code, the optional third input argument, conn, must
be a compile-time constant.

immse Image Processing
Toolbox

No known limitation

imopen Image Processing
Toolbox

• The input image I must be 2-D or 3-D.
• The structuring element SE must be a compile-time constant.

imoverlay Image Processing
Toolbox

When generating code, if you specify color as a character vector, then
the value must be a compile-time constant.

imreconstruc
t

Image Processing
Toolbox

• When generating code, the optional third input argument, conn,
must be a compile-time constant, and can only take the value 4 or 8.

• imreconstruct does not support uint64 and int64 data types for
code generation.

impyramid Image Processing
Toolbox

direction must be a compile-time constant.

 Supported Functions

1-17

Name Product Usage Notes and Limitations
imquantize Image Processing

Toolbox
No known limitation

imread Image Processing
Toolbox

• Supports reading of 8-bit JPEG images only. The input argument
filename must be a valid absolute path or relative path.

imresize Image Processing
Toolbox

• 'Colormap' and 'Dither' Name-Value pair arguments are not
supported.

• Indexed image is not supported.
• Custom interpolation kernel is not supported.
• For certain interpolation kernels, there may be a small numerical

mismatch between the results in MATLAB and the generated code.
imrotate Image Processing

Toolbox
• Input images of data type categorical are not supported.
• The method and bbox arguments must be compile-time constants.

imtophat Image Processing
Toolbox

• The image input I must be 2-D or 3-D.
• The structuring element SE must be a compile-time constant.

imwarp Image Processing
Toolbox

• Input images of data type categorical are not supported.
• The geometric transformation object input, tform, must be an

affine2d or projective2d object and must be constant.
• The interpolation method and optional parameter names must be

constants.
• The spatial referencing information output, RB, is not supported.

inceptionres
netv2

Deep Learning
Toolbox

For code generation, you can load the network by using the syntax net
= inceptionresnetv2 or by passing the inceptionresnetv2
function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('inceptionresnetv2')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

inceptionv3 Deep Learning
Toolbox

• For code generation, you can load the network by using the syntax
net = inceptionv3 or by passing the inceptionv3 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('inceptionv3').

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax inceptionv3('Weights','none') is not supported
for GPU code generation.

int8, int16,
int32, int64

MATLAB No known limitation

integralBoxF
ilter

Image Processing
Toolbox

The 'NormalizationFactor' parameter must be a compile-time
constant.

1 Functions Supported for GPU Code Generation

1-18

Name Product Usage Notes and Limitations
interp2 MATLAB • Xq and Yq must be the same size. Use meshgrid to evaluate on a

grid.
• For best results, provide X and Y as vectors. The values in these

vectors must be strictly monotonic and increasing.
• Code generation does not support the 'makima' interpolation

method.
• For the 'cubic' interpolation method, if the grid does not have

uniform spacing, an error results. In this case, use the 'spline'
interpolation method.

• For best results when you use the 'spline' interpolation method:

• Use meshgrid to create the inputs Xq and Yq.
• Use a small number of interpolation points relative to the

dimensions of V. Interpolating over a large set of scattered points
can be inefficient.

intlut Image Processing
Toolbox

No known limitation

isaUnderlyin
g

MATLAB No known limitation

isequal MATLAB No known limitation
isfloat MATLAB No known limitation
isinteger MATLAB No known limitation
islogical MATLAB No known limitation
ismatrix MATLAB No known limitation
isnumeric MATLAB No known limitation
isreal MATLAB No known limitation
isrow MATLAB No known limitation
issparse MATLAB No known limitation
issymmetric MATLAB Code generation does not support sparse matrix inputs for this

function.
istft Signal Processing

Toolbox
The 'ConjugateSymmetric' argument is not supported for code
generation.

istril MATLAB Code generation does not support sparse matrix inputs for this
function.

istriu MATLAB Code generation does not support sparse matrix inputs for this
function.

isvector MATLAB No known limitation
kron MATLAB Code generation does not support sparse matrix inputs for this

function.
lab2rgb Image Processing

Toolbox
When generating code, all character vector input arguments must be
compile-time constants.

 Supported Functions

1-19

Name Product Usage Notes and Limitations
label2idx Image Processing

Toolbox
No known limitation

ldivide MATLAB If you use ldivide with single type and double type operands, the
generated code might not produce the same result as MATLAB. See
“Binary Element-Wise Operations with Single and Double Operands”
(MATLAB Coder).

le MATLAB No known limitation
length MATLAB No known limitation
linsolve MATLAB • The opts structure must be a constant scalar. Code generation does

not support arrays of options structures.
• Code generation only optimizes these cases:

• UT
• LT
• UHESS = true (the TRANSA can be either true or false)
• SYM = true and POSDEF = true

Other options are equivalent to using mldivide.
• Code generation does not support sparse matrix inputs for this

function.
log MATLAB When the input value x is real, but the output should be complex,

simulation ends with an error. To produce the complex result, make the
input value complex by passing in complex(x).

log10 MATLAB No known limitation
log1p MATLAB No known limitation
logical MATLAB No known limitation
lt MATLAB No known limitation
lu MATLAB Code generation does not support sparse matrix inputs for this

function.
matchFeature
s

Computer Vision
Toolbox

CUDA code is generated only for the exhaustive matching method. If
the Approximate method is selected, GPU Coder issues a warning and
generates C/C++ code for this function.

mean MATLAB • If you specify dim, then it must be a constant.
• The outtype and nanflag options must be constant character

vectors.
• Integer types do not support the 'native' output data type option.

mean2 Image Processing
Toolbox

No known limitation

medfilt2 Image Processing
Toolbox

When generating code, the padopt argument must be a compile-time
constant.

meshgrid MATLAB No known limitation
mfcc Audio Toolbox™ No known limitation

1 Functions Supported for GPU Code Generation

1-20

Name Product Usage Notes and Limitations
minus MATLAB If you use minus with single type and double type operands, the

generated code might not produce the same result as MATLAB. See
“Binary Element-Wise Operations with Single and Double Operands”
(MATLAB Coder).

mldivide MATLAB No known limitation
mobilenetv2 Deep Learning

Toolbox
• For code generation, you can load the network by using the syntax

net = mobilenetv2 or by passing the mobilenetv2 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('mobilenetv2')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax mobilenetv2('Weights','none') is not supported
for GPU code generation.

mpower MATLAB • If A is a 2-by-2 or larger matrix and B is Inf or -Inf, then A^B
returns a matrix of NaN values.

• For A^b, if b is a noninteger scalar, then at least one of A or b must
be complex.

• Code generation does not support sparse matrix inputs for this
function.

mrdivide MATLAB Code generation does not support sparse matrix inputs for this
function.

mtimes MATLAB Multiplication of pure imaginary numbers by non-finite numbers might
not match MATLAB. The code generator does not specialize
multiplication by pure imaginary numbers—it does not eliminate
calculations with the zero real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

multithresh Image Processing
Toolbox

The input argument N must be a compile-time constant.

NaN or nan MATLAB Dimensions must be real, nonnegative, integers.
nasnetmobile Deep Learning

Toolbox
For code generation, you can load the network by using the syntax net
= nasnetmobile or by passing the nasnetmobile function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetmobile')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

nasnetlarge Deep Learning
Toolbox

For code generation, you can load the network by using the syntax net
= nasnetlarge or by passing the nasnetlarge function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetlarge')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

 Supported Functions

1-21

Name Product Usage Notes and Limitations
ne MATLAB Code generation does not support using ne to test inequality between

an enumeration member and a string array, a character array, or a cell
array of character arrays.

nextpow2 MATLAB No known limitation
nnz MATLAB No known limitation
numel MATLAB No known limitation
ones MATLAB Dimensions must be real, nonnegative integers.
ordfilt2 Image Processing

Toolbox
• GPU code generation requires the inputs to be bounded. If the input

is of variable dimension, the software generates C code.
• When generating code, the padopt argument must be a compile-

time constant.
• The generated GPU code is not optimized if the domain value that
defines the neighborhood for the filtering operation is of size greater
than 11x11.

For better performance, consider setting the
StackLimitPerThread option in the coder.gpuConfig object to
Inf.

otsuthresh Image Processing
Toolbox

No known limitation

padarray Image Processing
Toolbox

• Input arrays of data type categorical are not supported.
• When generating code, padarray supports only up to 3-D inputs.
• The input arguments padval and direction must be compile-time

constants.
pdist Statistics and

Machine Learning
Toolbox™

• The supported distance input argument values (Distance) for
optimized CUDA code are 'euclidean', 'squaredeuclidean',
'seuclidean', 'cityblock', 'minkowski', 'chebychev',
'cosine', 'correlation', 'hamming', and 'jaccard'.

• Distance cannot be a custom distance function.
• Distance must be a compile-time constant.

pdist2 Statistics and
Machine Learning
Toolbox

• The supported distance input argument values (Distance) for
optimized CUDA code are 'euclidean', 'squaredeuclidean',
'seuclidean', 'cityblock', 'minkowski', 'chebychev',
'cosine', 'correlation', 'hamming', and 'jaccard'.

• Distance cannot be a custom distance function.
• Distance must be a compile-time constant.
• Names in name-value pair arguments must be compile-time

constants.
• The sorted order of tied distances in the generated code can be
different from the order in MATLAB due to numerical precision.

1 Functions Supported for GPU Code Generation

1-22

Name Product Usage Notes and Limitations
plus MATLAB If you use plus with single type and double type operands, the

generated code might not produce the same result as MATLAB. See
“Binary Element-Wise Operations with Single and Double Operands”
(MATLAB Coder).

pointCloud Computer Vision
Toolbox

• GPU code generation for variable input sizes is not optimized.
Consider using constant size inputs for an optimized code
generation.

• GPU code generation supports the 'Color', 'Normal', and
'Intensity' name-value pairs.

• GPU code generation supports the findNearestNeighbors,
findNeighborsInRadius, findPointsInROI,
removeInvalidPoints, and select methods.

• For very large inputs, the memory requirements of the algorithm
may exceed the GPU device limits. In such cases, consider reducing
the input size to proceed with code generation.

pol2cart MATLAB No known limitation
polyint MATLAB No known limitation
pow2 Fixed-Point

Designer
No known limitation

power MATLAB • When both X and Y are real, but power(X,Y) is complex, simulation
produces an error and generated code returns NaN. To get the
complex result, make the input value X complex by passing in
complex(X). For example, power(complex(X),Y).

• When both X and Y are real, but X .^ Y is complex, simulation
produces an error and generated code returns NaN. To get the
complex result, make the input value X complex by using
complex(X). For example, complex(X).^Y.

• Code generation does not support sparse matrix inputs for this
function.

 Supported Functions

1-23

Name Product Usage Notes and Limitations
predict Deep Learning

Toolbox
• GPU code generation supports the following syntaxes:

• YPred = predict(net,X)
• [YPred1,...,YPredM] = predict(__)
• YPred = predict(net,sequences)
• __ = predict(__,Name,Value)

• The input X must not have variable size. The size must be fixed at
code generation time.

• GPU code generation for the predict function supports inputs that
are defined as half-precision floating point data types. For more
information, see half.

• GPU code generation supports only vector sequences. The sequence
length can be variable sized. The feature dimension must be fixed at
code generation time.

• Only the 'MiniBatchSize', 'SequenceLength',
'SequencePaddingDirection', and 'SequencePaddingValue'
name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• Only the 'longest' and 'shortest' option of the
'SequenceLength' name-value pair is supported for code
generation.

predictAndUp
dateState

Deep Learning
Toolbox

• GPU code generation supports the following syntaxes:

• [updatedNet,YPred] =
predictAndUpdateState(recNet,sequences)

• [updatedNet,YPred] =
predictAndUpdateState(__,Name,Value)

• GPU code generation for the predictAndUpdateState function is
only supported for recurrent neural networks and cuDNN target
library.

• GPU code generation supports only vector sequences. The sequence
length can be variable sized. The feature dimension must be fixed at
code generation time.

• Only the 'MiniBatchSize', 'SequenceLength',
'SequencePaddingDirection', and 'SequencePaddingValue'
name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• Only the 'longest' and 'shortest' option of the
'SequenceLength' name-value pair is supported for code
generation.

prod MATLAB If you supply dim, it must be a constant.
projective2d Image Processing

Toolbox
When generating code, you can only specify singular objects—arrays of
objects are not supported.

psnr Image Processing
Toolbox

No known limitation

1 Functions Supported for GPU Code Generation

1-24

Name Product Usage Notes and Limitations
qr MATLAB Code generation does not support sparse matrix inputs for this

function.
rad2deg MATLAB No known limitation
rank MATLAB Code generation does not support sparse matrix inputs for this

function.
resetState Deep Learning

Toolbox
GPU code generation for the resetState function is only supported
for recurrent neural networks and cuDNN target library.

rcond MATLAB Code generation does not support sparse matrix inputs for this
function.

rdivide MATLAB If you use rdivide with single type and double type operands, the
generated code might not produce the same result as MATLAB. See
“Binary Element-Wise Operations with Single and Double Operands”
(MATLAB Coder).

real MATLAB No known limitation
reallog MATLAB No known limitation
realsqrt MATLAB No known limitation
rectint MATLAB No known limitation
repelem MATLAB The input must be a vector or matrix. The input cannot be a

multidimensional array.
repmat MATLAB • Size arguments must have a fixed size.

• For sparse matrices, the repmat function does not support trailing
ones as inputs after the first two dimensions.

reshape MATLAB • If the input is a compile-time empty cell array, then the size
arguments must be constants.

• Size arguments must have a fixed size.
• For sparse matrices, the reshape function does not support trailing

ones as inputs after the first two dimensions.
resnet18 Deep Learning

Toolbox
• For code generation, you can load the network by using the syntax

net = resnet18 or by passing the resnet18 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet18')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax resnet18('Weights','none') is not supported for
GPU code generation.

 Supported Functions

1-25

Name Product Usage Notes and Limitations
resnet50 Deep Learning

Toolbox
• For code generation, you can load the network by using the syntax

net = resnet50 or by passing the resnet50 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet50')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax resnet50('Weights','none') is not supported for
GPU code generation.

resnet101 Deep Learning
Toolbox

• For code generation, you can load the network by using the syntax
net = resnet101 or by passing the resnet101 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet101')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax resnet101('Weights','none') is not supported for
GPU code generation.

rgb2gray MATLAB No known limitation
rgb2hsv MATLAB No known limitation
rgb2lab Image Processing

Toolbox
When generating code, all character vector input arguments must be
compile-time constants.

rot90 MATLAB Does not support cell arrays for the first argument.
round MATLAB • Code generation supports only the syntax Y = round(X).

• Code generation does not support char or logical data types for
X.

sec MATLAB No known limitation
sech MATLAB No known limitation
segnetLayers Computer Vision

Toolbox
For code generation, you must first create a SegNet network by using
the segnetLayers function. Then, use the trainNetwork function on
the resulting lgraph object to train the network for segmentation.
Once the network is trained and evaluated, you can generate code for
the DAGNetwork object using GPU Coder.

selectStrong
estBboxMulti
class

Computer Vision
Toolbox

• Code generation is only supported for numeric labels.
• Code generation is not supported for rotated rectangle bounding

box inputs.
SeriesNetwor
k

Deep Learning
Toolbox

• Only the activations, classify, predict,
predictAndUpdateState, and resetState object functions are
supported.

• To create a SeriesNetwork object for code generation, see “Load
Pretrained Networks for Code Generation” on page 4-15.

sin MATLAB No known limitation
single MATLAB No known limitation

1 Functions Supported for GPU Code Generation

1-26

Name Product Usage Notes and Limitations
sinh MATLAB No known limitation
size MATLAB No known limitation
sortrows MATLAB • The first input argument must not be a cell array.

• If A is complex with all zero imaginary parts, then MATLAB might
convert A to real(A) before calling sortrows(A). In this case,
MATLAB sorts the rows of A by real(A), but the generated code
sorts the rows of A by abs(A). To make the generated code match
MATLAB, use sortrows(real(A)) or
sortrows(A,'ComparisonMethod','real').

sph2cart MATLAB No known limitation
sqrt MATLAB Simulation produces an error. Generated standalone code returns NaN

when the input value x is real, but the output should be complex. To get
the complex result, make the input value complex by passing in
complex(x).

squeeze MATLAB Does not support cell arrays.
squeezenet Deep Learning

Toolbox
• For code generation, you can load the network by using the syntax

net = squeezenet or by passing the squeezenet function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('squeezenet').

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax squeezenet('Weights','none') is not supported for
GPU code generation.

ssdObjectDet
ector

Computer Vision
Toolbox

• Only the detect method of the ssdObjectDetector is supported
for code generation.

• The bounding box output from code generation may have small
numerical differences with the simulation results from MATLAB.

• The code generator resizes the input image size to the detect
method to that of the input layer size of the network. However, the
bounding boxes output generated is with reference to the original
input size.

• The roi argument to the detect method must be a codegen
constant (coder.const()) and a 1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, MaxSize, and
MiniBatchSize Name-Value pairs are supported. All name-value
pair must be compile time constant.

• The channel and batch size of the input image must be fixed size.
• The labels output is returned as a categorical array.

std MATLAB If you specify dim, then it must be a constant.
stft Signal Processing

Toolbox
• The 'ConjugateSymmetric' argument is not supported for code

generation.
• Timetables are not supported for code generation.

 Supported Functions

1-27

Name Product Usage Notes and Limitations
stretchlim Image Processing

Toolbox
No known limitation

sub2ind MATLAB • The first argument must be a valid size vector. Code generation does
not support size vectors for arrays with more than intmax
elements.

• The generated code treats NaN inputs as out of range and throws a
run-time error.

subsasgn Fixed-Point
Designer

No known limitation

subsindex MATLAB No known limitation
subsref Fixed-Point

Designer
No known limitation

sum MATLAB • If you specify dim, then it must be a constant.
• The outtype and nanflag options must be constant character

vectors.
superpixels Image Processing

Toolbox
• All character vector inputs must be compile-time constants.
• The value of 'IsInputLab' (true or false) must be a compile-

time constant.
svd MATLAB • Code generation uses a different SVD implementation than MATLAB

uses. Because the singular value decomposition is not unique, left
and right singular vectors might differ from those computed by
MATLAB.

• When the input matrix contains a nonfinite value, the generated
code does not issue an error. Instead, the output contains NaN
values.

• Code generation does not support sparse matrix inputs for this
function.

swapbytes MATLAB Inheritance of the class of the input to swapbytes in a MATLAB
Function block is supported only when the class of the input is double.
For non-double inputs, the input port data types must be specified, not
inherited.

tan MATLAB No known limitation
tanh MATLAB No known limitation
times MATLAB • Multiplication of pure imaginary numbers by non-finite numbers

might not match MATLAB. The code generator does not specialize
multiplication by pure imaginary numbers—it does not eliminate
calculations with the zero real part. For example, (Inf + 1i)*1i
= (Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

• If you use times with single type and double type operands, the
generated code might not produce the same result as MATLAB.

trace MATLAB Code generation does not support sparse matrix inputs for this
function.

transpose MATLAB No known limitation

1 Functions Supported for GPU Code Generation

1-28

Name Product Usage Notes and Limitations
tril MATLAB If you supply the argument that represents the order of the diagonal

matrix, then it must be a real and scalar integer value.
triu MATLAB If you supply the argument that represents the order of the diagonal

matrix, then it must be a real and scalar integer value.
true MATLAB Dimensions must be real, nonnegative, integers.
typecast MATLAB • The value of the data type argument must be lowercase.

• When you use typecast with inherited input port data types in
MATLAB Function blocks, the software can throw a size error. To
avoid this error, specify the block input port data types explicitly.

• Integer input or result classes must map directly to a C type on the
target hardware.

• The input must be a variable-length vector or a fixed-size vector.
• The output vector always has the same orientation as the input

vector.
uint8, uint16,
uint32, uint64

MATLAB No known limitation

uminus MATLAB No known limitation
unetLayers Computer Vision

Toolbox
You can use the U-Net network for code generation. First, create the
network using the unetLayers function. Then, use the trainNetwork
function to train the network for segmentation. After training and
evaluating the network, you can generate code for the DAGNetwork
object by using GPU Coder.

uplus MATLAB No known limitation
vander MATLAB No known limitation
var MATLAB If specified, dim must be a constant.
vertcat Fixed-Point

Designer
No known limitation

vgg16 Deep Learning
Toolbox

• For code generation, you can load the network by using the syntax
net = vgg16 or by passing the vgg16 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg16')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax vgg16('Weights','none') is not supported for GPU
code generation.

 Supported Functions

1-29

Name Product Usage Notes and Limitations
vgg19 Deep Learning

Toolbox
• For code generation, you can load the network by using the syntax

net = vgg19 or by passing the vgg19 function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg19')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax vgg19('Weights','none') is not supported for GPU
code generation.

watershed Image Processing
Toolbox

• Supports only 2-D images
• Supports only 4 or 8 connectivity
• Supports images containing up to 65,535 regions
• Output type is always uint16

xception Deep Learning
Toolbox

• For code generation, you can load the network by using the syntax
net = xception or by passing the xception function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('xception')

For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

• The syntax xception('Weights','none') is not supported for
GPU code generation.

xor MATLAB No known limitation
ycbcr2rgb Image Processing

Toolbox
No known limitation

yolov2Layers Computer Vision
Toolbox

For code generation, you must first create a YOLO v2 network by using
the yolov2Layers function. Then, use the
trainYOLOv2ObjectDetector function on the resulting lgraph
object to train the network for object detection. Once the network is
trained and evaluated, you can generate code for the
yolov2ObjectDetector object using GPU Coder.

yolov2Object
Detector

Computer Vision
Toolbox

• Only the detect method of the yolov2ObjectDetector is
supported for code generation.

• The roi argument to the detect method must be a codegen
constant (coder.const()) and a 1x4 vector.

• Only the Threshold, SelectStrongest, MinSize, MaxSize, and
MiniBatchSize Name-Value pairs are supported.

• The height, width, channel, and batch size of the input image must
be fixed size.

• The minimum batch size value passed to detect method must be
fixed size.

• The labels output is returned as a cell array of character vectors,
such as {'car','bus'}.

zeros MATLAB Dimensions must be nonnegative real integers.

1 Functions Supported for GPU Code Generation

1-30

Kernel Creation

2

Kernels from Element-Wise Loops
The simplest case of CUDA kernel creation is from MATLAB functions that contain scalarized,
element-wise math operations. When element-wise operations are enclosed within a for-loop body,
concurrent CUDA threads can be invoked to compute each loop iteration in parallel. Because CUDA
threads execute in no particular order, and are independent of each other, it is essential that no
iteration in your for-loop depends on the results of other iterations.

Element-Wise Math Example
This example shows how to create CUDA kernels from functions that contain element-wise math
operations. Suppose that you want to square each element of a matrix x and scale by a factor of 1/(i
+j), where i,j are the row and column indexes. You can implement this example as a MATLAB
function.

function [y] = myFun(x)

y = zeros(size(x));
for i = 1:size(x,1)
 for j = 1:size(x,2)
 y(i,j)=(x(i,j)^2)/(i+j);
 end
end
end

Preparing myFun for Code Generation
The first statement zeros(size(A)) in the myFun function is to initialize result vector y to zeros.
For CUDA code generation, pre-allocate memory for y without incurring the overhead of initializing
the memory to zeros. Replace this line with coder.nullcopy(zeros(size(y))).

To create CUDA kernels from loops, GPU Coder provides another pragma coder.gpu.kernel.
Specifying this kernel pragma overrides all parallel-loop analysis. If you do not specify any
parameters, GPU Coder determines the kernel bounds based on the loop bounds and input size. It
provides a way for you to specify kernel launch parameters such as thread and block sizes. However,
use it only when you know that the loop is safe to parallelize. Because the myFun example is simple
and does not require specification of the kernel launch parameters, you can utilize the
coder.gpu.kernelfun pragma to generate CUDA kernels.

With these modifications, the original myFun function is suitable for code generation.

function [y] = myFun(x) %#codegen

y = coder.nullcopy(zeros(size(x)));
coder.gpu.kernelfun();
for i = 1:size(x,1)
 for j = 1:size(x,2)
 y(i,j)=(x(i,j)^2)/(i+j);
 end
end
end

2 Kernel Creation

2-2

Generated CUDA Code
When you generate CUDA code by using the GPU Coder app or from the command line, GPU Coder
creates a single kernel that performs squaring and scaling operation. The following is a snippet of the
myFun_kernel1 kernel code.
static __global__ __launch_bounds__(512, 1) void myFun_kernel1(const real_T *x,
 real_T *y)
{
...
threadId = ((((gridDim.x * gridDim.y * blockIdx.z + gridDim.x * blockIdx.y) +
 blockIdx.x) * (blockDim.x * blockDim.y * blockDim.z) +
 threadIdx.z * blockDim.x * blockDim.y) + threadIdx.y * blockDim.x)
 + threadIdx.x;
 i = (int32_T)(threadId / 512U);
 j = (int32_T)(threadId - (uint32_T)i * 512U);
 if ((!(j >= 512)) && (!(i >= 512))) {
 y[i + (j << 9)] = x[i + (j << 9)] * x[i + (j << 9)] / ((real_T)(i + j) + 2.0);
 }
}

The following is a snippet of the main myFun function. Before calling myFun_kernel1, there is a
single cudaMemcpy call that transfers the matrix x from the host (x) to the device (gpu_x). The
kernel has 512 blocks containing 512 threads per block, consistent with the size of the input vector. A
second cudaMemcpy call copies the result of the computation back to the host.
cudaMemcpy((void *)gpu_x, (void *)x, 2097152ULL, cudaMemcpyHostToDevice);
myFun_kernel1<<<dim3(512U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_x, gpu_y);
cudaMemcpy((void *)y, (void *)gpu_y, 2097152ULL, cudaMemcpyDeviceToHost);

Limitations
• If the loop bounds are of the unsigned data type, the code generator may add conditional checks

to determine if the loop bounds are valid. These conditional checks may limit optimizations that
are performed by the software and introduce reduction kernels that can affect performance.

See Also
coder.gpu.constantMemory | coder.gpu.kernel | coder.gpu.kernelfun |
gpucoder.matrixMatrixKernel | gpucoder.stencilKernel

Related Examples
• “Design Patterns” on page 2-22
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Kernels from Library Calls” on page 2-8
• “Legacy Code Integration” on page 2-18

 Kernels from Element-Wise Loops

2-3

Kernels from Scatter-Gather Type Operations
GPU Coder also supports the concept of reductions - an important exception to the rule that loop
iterations must be independent. A reduction variable accumulates a value that depends on all the
iterations together, but is independent of the iteration order. Reduction variables appear on both side
of an assignment statement, such as in summation, dot product, and sort. The following example
shows the typical usage of a reduction variable x:

x = ...; % Some initialization of x
for i = 1:n
 x = x + d(i);
end

The variable x in each iteration gets its value either before entering the loop or from the previous
iteration of the loop. This serial order type implementation is not suitable for parallel execution due
to the chain of dependencies in the sequential execution. An alternative approach is to employ a
binary tree-based approach.

In the tree-based approach, you can execute every horizontal level of the tree in parallel over a
certain number of passes. When compared to sequential execution, the binary tree does require more
memory because each pass requires an array of temporary values as output. The performance benefit
that you receive far outweighs the cost of increased memory usage. GPU Coder creates reduction
kernels by using this tree-based approach wherein each thread block reduces a portion of the array.
Parallel reduction requires partial result data exchanges between thread blocks. In older CUDA
devices, this data exchange was achieved by using shared memory and thread synchronization.
Starting with the Kepler GPU architecture, CUDA provides shuffle (shfl) instruction and fast device
memory atomic operations that make reductions even faster. Reduction kernels that the GPU Coder
creates use the shfl_down instruction to reduce across a warp (32 threads) of threads. Then, the
first thread of each warp uses the atomic operation instructions to update the reduced value.

For more information on the instructions, refer to the NVIDIA documentation.

2 Kernel Creation

2-4

Vector Sum Example
This example shows how to create CUDA reduction type kernels by using GPU Coder. Suppose that
you want to create a vector v and compute the sum of its elements. You can implement this example
as a MATLAB function.

function s = VecSum(v)
 s = 0;
 for i = 1:length(v)
 s = s + v(i);
 end
end

Prepare vecSum for Kernel Creation
GPU Coder requires no special pragma to infer reduction kernels. In this example, use the
coder.gpu.kernelfun pragma to generate CUDA reduction kernels. Use the modified VecSum
function.

function s = VecSum(v) %#codegen
 s = 0;

 coder.gpu.kernelfun();
 for i = 1:length(v)
 s = s + v(i);
 end
end

Generated CUDA Code
When you generate CUDA code by using the GPU Coder app or from the command line, GPU Coder
creates a single kernel that performs the vector sum calculation. The following is a snippet of
vecSum_kernel1.
static __global__ __launch_bounds__(512, 1) void vecSum_kernel1(const real_T *v,
 real_T *s)
{
 uint32_T threadId;
 uint32_T threadStride;
 uint32_T thdBlkId;
 uint32_T idx;
 real_T tmpRed;
 ;
 ;
 thdBlkId = (threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x)
 + threadIdx.x;
 threadId = ((gridDim.x * gridDim.y * blockIdx.z + gridDim.x * blockIdx.y) +
 blockIdx.x) * (blockDim.x * blockDim.y * blockDim.z) + thdBlkId;
 threadStride = gridDim.x * blockDim.x * (gridDim.y * blockDim.y) * (gridDim.z *
 blockDim.z);
 if (!((int32_T)threadId >= 512)) {
 tmpRed = 0.0;
 for (idx = threadId; threadStride < 0U ? idx >= 511U : idx <= 511U; idx +=
 threadStride) {
 tmpRed += v[idx];
 }

 tmpRed = workGroupReduction1(tmpRed, 0.0);
 if (thdBlkId == 0U) {
 atomicOp1(s, tmpRed);
 }
 }
}

 Kernels from Scatter-Gather Type Operations

2-5

Before calling VecSum_kernel1, two cudaMemcpy calls transfer the vector v and the scalar s from
the host to the device. The kernel has one thread block containing 512 threads per block, consistent
with the size of the input vector. A third cudaMemcpy call copies the result of the computation back
to the host. The following is a snippet of the main function.
 cudaMemcpy((void *)gpu_v, (void *)v, 4096ULL, cudaMemcpyHostToDevice);
 cudaMemcpy((void *)gpu_s, (void *)&s, 8ULL, cudaMemcpyHostToDevice);
 VecSum_kernel1<<<dim3(1U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_v, gpu_s);
 cudaMemcpy(&s, gpu_s, 8U, cudaMemcpyDeviceToHost);

Note For better performance, GPU Coder gives priority to parallel kernels over reductions. If your
algorithm contains reduction inside a parallel loop, GPU Coder infers the reduction as a regular loop
and generates kernels for it.

1-D Reduction Operations on the GPU
You can use the gpucoder.reduce function to generate CUDA code that performs efficient 1-D
reduction operations on the GPU. The generated code uses the CUDA shuffle intrinsics to implement
the reduction operation.

For example, to find the sum and max elements of an array A:

function s = myReduce(A)
 s = gpucoder.reduce(A, {@mysum, @mymax});
end

function c = mysum(a, b)
 c = a+b;
end

function c = mymax(a, b)
 c = max(a,b);
end

For code generation, the gpucoder.reduce function has these requirements:

• The input must be of numeric or logical data type.
• The function passed through the @handle must be a binary function that accepts two inputs and

returns one output. The inputs and outputs must be of the same data type.
• The function must be commutative and associative.

Note For some inputs that are of the integer data type, the code generated for the
gpucoder.reduce function may contain intermediate computations that reach saturation. In such
cases, the results from the generated code may not match the simulation results from MATLAB.

See Also
coder.gpu.constantMemory | coder.gpu.kernel | coder.gpu.kernelfun |
gpucoder.matrixMatrixKernel | gpucoder.reduce | gpucoder.stencilKernel

Related Examples
• “Design Patterns” on page 2-22

2 Kernel Creation

2-6

• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Library Calls” on page 2-8
• “Legacy Code Integration” on page 2-18

 Kernels from Scatter-Gather Type Operations

2-7

Kernels from Library Calls
GPU Coder supports libraries optimized for CUDA GPUs such as cuBLAS, cuSOLVER, cuFFT, Thrust,
cuDNN, and TensorRT libraries.

• The cuBLAS library is an implementation of Basic Linear algebra Subprograms (BLAS) on top of
the NVIDIA CUDA run time. It allows you to access the computational resources of the NVIDIA
GPU.

• The cuSOLVER library is a high-level package based on the cuBLAS and cuSPARSE libraries. It
provides useful LAPACK-like features, such as common matrix factorization and triangular solve
routines for dense matrices, a sparse least-squares solver, and an Eigenvalue solver.

• The cuFFT library provides a high-performance implementation of the Fast Fourier Transform
(FFT) algorithm on NVIDIA GPUs. The cuBLAS, cuSOLVER, and cuFFT libraries are part of the
NVIDIA CUDA toolkit.

• Thrust is a C++ template library for CUDA. The Thrust library is shipped with CUDA toolkit and
allows you to take advantage of GPU-accelerated primitives such as sort to implement complex
high-performance parallel applications.

• The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library of
primitives for deep neural networks. cuDNN provides highly tuned implementations for standard
routines such as forward and backward convolution, pooling, normalization, and activation layers.
TheNVIDIA TensorRT is a high performance deep learning inference optimizer and runtime
library. For more information, see “Code Generation for Deep Learning Networks by Using
cuDNN” on page 4-17 and “Code Generation for Deep Learning Networks by Using TensorRT” on
page 4-26.

GPU Coder does not require a special pragma to generate kernel calls to libraries. During the code
generation process, when you select the Enable cuBLAS option in the GPU Coder app or use
config_object.GpuConfig.EnableCUBLAS = true property in CLI, GPU Coder replaces some
functionality with calls to the cuBLAS library. When you select the Enable cuSOLVER option in the
GPU Coder app or use config_object.GpuConfig.EnableCUSOLVER = true property in CLI,
GPU Coder replaces some functionality with calls to the cuSOLVER library. For GPU Coder to replace
high-level math functions to library calls, the following conditions must be met:

• GPU-specific library replacement must exist for these functions.
• MATLAB Coder data size thresholds must be satisfied.

GPU Coder supports cuFFT, cuSOLVER, and cuBLAS library replacements for the functions listed in
the table. For functions that have no replacements in CUDA, GPU Coder uses portable MATLAB
functions that are mapped to the GPU.

MATLAB Function Description MATLAB Coder
LAPACK Support

cuBLAS, cuSOLVER,
cuFFT, Thrust Support

mtimes Matrix multiply Yes Yes
mldivide (‘\’) Solve system of linear

equation Ax=B for x
Yes Yes

lu LU matrix factorization Yes Yes
qr Orthogonal-triangular

decomposition
Yes Partial

det Matrix determinant Yes Yes

2 Kernel Creation

2-8

https://developer.nvidia.com/tensorrt

MATLAB Function Description MATLAB Coder
LAPACK Support

cuBLAS, cuSOLVER,
cuFFT, Thrust Support

inv Matrix inverse Yes Yes
chol Cholesky factorization Yes Yes
rcond Reciprocal condition

number
Yes Yes

linsolve Solve system of linear
equations Ax=B

Yes Yes

eig Eigenvalues and eigen
vectors

Yes No

schur Schur decomposition Yes No
svd Singular value

decomposition
Yes Partial

fft,fft2,fftn Fast Fourier Transform Yes Yes
ifft,ifft2,ifftn Inverse Fast Fourier

Transform
Yes Yes

sort Sort array elements Yes, using
gpucoder.sort

When you select the Enable cuFFT option in the GPU Coder app or use
config_object.GpuConfig.EnableCUFFT = true property in CLI, GPU Coder maps
fft,ifft,fft2,ifft2,fftn.ifftn function calls in your MATLAB code to the appropriate cuFFT
library calls. For 2-D transforms and higher, GPU Coder creates multiple 1-D batched transforms.
These batched transforms have higher performance than single transforms. GPU Coder only supports
out-of-place transforms. If Enable cuFFT is not selected, GPU Coder uses C FFTW libraries where
available or generates kernels from portable MATLAB FFT. Both single and double precision data
types are supported. Input and output can be real or complex-valued, but real-valued transforms are
faster. cuFFT library support input sizes that are typically specified as a power of 2 or a value that
can be factored into a product of small prime numbers. In general the smaller the prime factor, the
better the performance.

Note Using CUDA library names such as cufft, cublas, and cudnn as the names of your MATLAB
function results in code generation errors.

See Also
coder.gpu.constantMemory | coder.gpu.kernel | coder.gpu.kernelfun |
gpucoder.matrixMatrixKernel | gpucoder.sort | gpucoder.stencilKernel

Related Examples
• “Design Patterns” on page 2-22
• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Legacy Code Integration” on page 2-18

 Kernels from Library Calls

2-9

cuBLAS Example
This example multiplies two matrices A and B by using the cuBLAS library. The MATLAB
implementation of GEneral Matrix-Matrix Multiplication (GEMM) is:

function [C] = blas_gemm(A,B)

 C = zeros(size(A);
 C = A * B;
end

Generated CUDA Code
When you generate CUDA code, GPU Coder creates function calls to initialize the cuBLAS library,
perform matrix-matrix operations, and release hardware resources that the cuBLAS library uses. The
following is a snippet of the generated CUDA code.
 cublasEnsureInitialization();
 blas_gemm_kernel1<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_C);
 alpha1 = 1.0;
 beta1 = 0.0;
 cudaMemcpy((void *)gpu_alpha1, (void *)&alpha1, 8ULL, cudaMemcpyHostToDevice);
 cudaMemcpy((void *)gpu_A, (void *)A, 8388608ULL, cudaMemcpyHostToDevice);
 cudaMemcpy((void *)gpu_B, (void *)B, 8388608ULL, cudaMemcpyHostToDevice);
 cudaMemcpy(gpu_beta1, &beta1, 8ULL, cudaMemcpyHostToDevice);
 cublasDgemm(cublasGlobalHandle, CUBLAS_OP_N, CUBLAS_OP_N, 1024, 1024, 1024,
 (double *)gpu_alpha1, (double *)&gpu_A[0], 1024, (double *)&gpu_B
 [0], 1024, (double *)gpu_beta1, (double *)&gpu_C[0], 1024);
 cublasEnsureDestruction();
 cudaMemcpy((void *)C, (void *)gpu_C, 8388608ULL, cudaMemcpyDeviceToHost);

To initialize the cuBLAS library and create a handle to the cuBLAS library context, the function
cublasEnsureInitialization() calls cublasCreate() cuBLAS API. It allocates hardware
resources on the host and device.
static void cublasEnsureInitialization(void)
{
 if (cublasGlobalHandle == NULL) {
 cublasCreate(&cublasGlobalHandle);
 cublasSetPointerMode(cublasGlobalHandle, CUBLAS_POINTER_MODE_DEVICE);
 }
}

blas_gemm_kernel1 initializes the result matrix C to zero. This kernel is launched with 2048 blocks
and 512 threads per block. These block and thread values correspond to the size of C.
static __global__ __launch_bounds__(512, 1) void blas_gemm_kernel1(real_T *C)
{
 int32_T threadIdX;
 threadIdX = (int32_T)(blockDim.x * blockIdx.x + threadIdx.x);
 if (!(threadIdX >= 1048576)) {
 C[threadIdX] = 0.0;
 }
}

Calls to cudaMemcpy transfer the matrices A and B from the host to the device. The function
cublasDgemm is a level-3 Basic Linear Algebra Subprogram (BLAS3) that performs the matrix-matrix
multiplication:

C = αAB + βC

where α and β are scalars, and A, B, and C are matrices stored in column-major format.
CUBLAS_OP_N controls transpose operations on the input matrices.

2 Kernel Creation

2-10

The final calls are to cublasEnsureDestruction() and another cudaMemcpy.
cublasEnsureDestruction() calls cublasCreate() cuBLAS API to release hardware resources
the cuBLAS library uses. cudaMemcpy copies the result matrix C from the device to the host.

static void cublasEnsureDestruction(void)
{
 if (cublasGlobalHandle != NULL) {
 cublasDestroy(cublasGlobalHandle);
 cublasGlobalHandle = NULL;
 }
}

Prepare blas_gemm for Kernel Creation
GPU Coder requires no special pragma to generate calls to libraries. There are two ways to generate
CUDA kernels — coder.gpu.kernelfun and coder.gpu.kernel. In this example, we utilize the
coder.gpu.kernelfun pragma to generate CUDA kernels. The modified blas_gemm function is:

function [C] = blas_gemm(A,B) %#codegen
 C = coder.nullcopy(zeros(size(A));

 coder.gpu.kernelfun;
 C = A * B;
end

Note A minimum size (128 elements) is required on the input data for replacing math operators and
functions with cuBLAS library implementations.

 cuBLAS Example

2-11

cuSOLVER Example
This example solves the systems of linear equations Ax = B for x by using the cuSOLVER library.
The matrices A and B must have the same number of rows. If A is a scalar, then A\B is equivalent to
A.\B. If A is a square n-by-n matrix and B is a matrix with n rows, then x = A\B is a solution to the
equation A*x = B, if it exists. The MATLAB implementation of backslash is:

function [x] = backslash(A,b)
if (isscalar(A))
 x = coder.nullcopy(zeros(size(b)));
else
 x = coder.nullcopy(zeros(size(A,2),size(b,2)));
end

x = A\b;

end

Prepare backslash for Kernel Creation
GPU Coder requires no special pragma to generate calls to libraries. Just as before, there are two
ways to generate CUDA kernels — coder.gpu.kernelfun and coder.gpu.kernel. In this
example, we utilize the coder.gpu.kernelfun pragma to generate CUDA kernels. The modified
backslash function is:

function [x] = backslash(A,b) %#codegen

if (isscalar(A))
 x = coder.nullcopy(zeros(size(b)));
else
 x = coder.nullcopy(zeros(size(A,2),size(b,2)));
end

coder.gpu.kernelfun()
x = A\b;

end

Note A minimum size is required on the input data for replacing math operators and functions with
cuSOLVER library implementations. The minimum threshold is 128 elements.

Generated CUDA Code
When you generate CUDA code, GPU Coder creates function calls to initialize the cuSOLVER library,
perform mldivide operations, and release hardware resources that the cuSOLVER library uses. A
snippet of the generated CUDA code is:
 cusolverEnsureInitialization();

 /* Copyright 2017 The MathWorks, Inc. */
 cudaMemcpy(b_gpu_A, A, 1152UL, cudaMemcpyHostToDevice);
 blackslash_kernel1<<<dim3(1U, 1U, 1U), dim3(160U, 1U, 1U)>>>(b_gpu_A,gpu_A);
 cudaMemcpy(b_A, gpu_A, 1152UL, cudaMemcpyDeviceToHost);
 cusolverDnDgetrf_bufferSize(cusolverGlobalHandle, 12, 12, &gpu_A[0], 12,
 &cusolverWorkspaceReq);
 cusolverWorkspaceTypeSize = 8;

2 Kernel Creation

2-12

 cusolverInitWorkspace();
 cudaMemcpy(gpu_A, b_A, 1152UL, cudaMemcpyHostToDevice);
 cusolverDnDgetrf(cusolverGlobalHandle, 12, 12, &gpu_A[0], 12, (real_T *)
 cusolverWorkspaceBuff, &gpu_ipiv_t[0], gpu_info_t);
 A_dirtyOnGpu = true;
 cudaMemcpy(&info_t, gpu_info_t, 4UL, cudaMemcpyDeviceToHost);

To initialize the cuSOLVER library and create a handle to the cuSOLVER library context, the function
cusolversEnsureInitialization() calls cusolverDnCreate() cuSOLVER API. It allocates
hardware resources on the host and device.

static void cusolverEnsureInitialization(void)
{
 if (cusolverGlobalHandle == NULL) {
 cusolverDnCreate(&cuSolverGlobalHandle);
 }
}

backslash_kernel1 zero pads the matrix A. This kernel is launched with a single block of 512
threads.
static __global__ __launch_bounds__(160, 1) void backslash_kernel1(const real_T *
 A, real_T *b_A)
{
 int32_T threadId;
 ;
 ;
 threadId = (int32_T)(((gridDim.x * gridDim.y * blockIdx.z + gridDim.x *
 blockIdx.y) + blockIdx.x) * (blockDim.x * blockDim.y * blockDim.z) +
 (int32_T)((threadIdx.z * blockDim.x * blockDim.y +
 threadIdx.y * blockDim.x) + threadIdx.x));
 if (!(threadId >= 144)) {
 /* Copyright 2017 The MathWorks, Inc. */
 b_A[threadId] = A[threadId];
 }
}

Calls to cudaMemcpy transfer the matrix A from the host to the device. The function
cusolverDnDgetrf computes the LU factorization of an m×n matrix:

P*A = L*U

where A is an m×n matrix, P is a permutation matrix, L is a lower triangular matrix with unit
diagonal, and U is an upper triangular matrix.

cuSOLVER Standalone Code
For functions like qr that only have partial support in cuSOLVER, GPU Coder uses LAPACK library
where necessary. For MEX functions, the code generator uses the LAPACK library that is included
with MATLAB. For standalone code, the code generator uses the LAPACK library that you specify. To
specify the LAPACK library:

• At the command line, define your own coder.LAPACKCallback class containing the LAPACK
library information and assign it to the CustomLAPACKCallback property of the code
configuration object.

• In the GPU Coder app, set Custom LAPACK library callback to your LAPACK library.

For example, to generate a standalone executable, you can use the following code generation script.
Here myLAPACK is the name of the custom coder.LAPACKCallback class containing the LAPACK
library information.
cfg = coder.gpuConfig('exe');
cfg.CustomLAPACKCallback = 'myLAPACK';

 cuSOLVER Example

2-13

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

classdef myLAPACK < coder.LAPACKCallback
 methods (Static)
 function hn = getHeaderFilename()
 hn = 'lapacke.h';
 end
 function updateBuildInfo(buildInfo, buildctx)
 [~,linkLibExt] = buildctx.getStdLibInfo();
 cudaPath = getenv('CUDA_PATH');
 libPath = 'lib\x64';

 buildInfo.addIncludePaths(fullfile(cudaPath,'include'));
 libName = 'cusolver';
 libPath = fullfile(cudaPath,libPath);
 buildInfo.addLinkObjects([libName linkLibExt], libPath, ...
 '', true, true);

 lapackLocation = 'C:\LAPACK\win64'; % specify path to LAPACK libraries

 includePath = fullfile(lapackLocation,'include');
 buildInfo.addIncludePaths(includePath);
 libPath = fullfile(lapackLocation,'lib');
 libName = 'mllapack';

 buildInfo.addLinkObjects([libName linkLibExt], libPath, ...
 '', true, true);
 buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');
 buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');
 end
 end
end

For more information, see “Speed Up Linear Algebra in Generated Standalone Code by Using
LAPACK Calls” (MATLAB Coder).

2 Kernel Creation

2-14

FFT Example
This example shows how a two-dimensional Fourier transform can be used on an optical mask to
compute its diffraction pattern. Create a logical array that defines an optical mask with a small,
circular aperture.

n = 2^10; % size of mask
M = zeros(n);
I = 1:n;
x = I-n/2; % mask x-coordinates
y = n/2-I; % mask y-coordinates
[X,Y] = meshgrid(x,y); % create 2-D mask grid
R = 10; % aperture radius
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
M(A) = 1; % set mask elements inside aperture to 1
figure
imagesc(M) % plot mask
axis image

DP = fftshift(fft2(M));
imagesc(abs(DP))
axis image

Prepare myFFT for Kernel Creation
Create an entry-point function myFFT that computes the 2-D Fourier transform of the mask by using
the fft2 function. Use the fftshift function to rearrange the output so that the zero-frequency
component is at the center. To map this function to a GPU kernel, place the coder.gpu.kernelfun
pragma within the function.

function [DP] = myFFT(M)

coder.gpu.kernelfun();

DP = fftshift(fft2(M));

 FFT Example

2-15

Generated CUDA Code
When you generate CUDA code, GPU Coder creates function calls (cufftEnsureInitialization)
to initialize the cuFFT library, perform FFT operations, and release hardware resources that the
cuFFT library uses. A snippet of the generated CUDA code is:
void myFFT(myFFTStackData *SD, const real_T M[1048576], creal_T DP[1048576])
 {
 ...
 cudaMemcpy((void *)gpu_M, (void *)M, 8388608ULL, cudaMemcpyHostToDevice);
 myFFT_kernel1<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_M, gpu_b);
 cufftEnsureInitialization(1024, CUFFT_D2Z, 1024, 1024);
 cufftExecD2Z(*cufftGlobalHandlePtr, (cufftDoubleReal *)&gpu_b[0],
 (cufftDoubleComplex *)&gpu_y1[0]);
 ...
 myFFT_kernel2<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_y1, gpu_y);
 cufftEnsureInitialization(1024, CUFFT_Z2Z, 1024, 1024);
 cufftExecZ2Z(*cufftGlobalHandlePtr, (cufftDoubleComplex *)&gpu_y[0],
 (cufftDoubleComplex *)&gpu_DP[0], CUFFT_FORWARD);
 ...
 cufftEnsureDestruction();
 ...
 }

The first cudaMemcpy function call transfers the 1024x1024 double-valued input M to the GPU
memory. The myFFT_kernel1 kernel performs pre-processing of the input data before the cuFFT
library calls. The two-dimensional Fourier transform call fft2 is equivalent to computing
fft(fft(M).').'. Because batched transforms generally have higher performance compared to
single transforms, GPU Coder has two 1-D cuFFT calls cufftExecD2Z to compute the double-
precision real-to-complex forward transform of the input M followed by cufftExecZ2Z to perform the
double-precision complex-to-complex transform of the result. The cufftEnsureDestruction() call
destroys and frees all GPU resources associated with the cuFFT library call.

2 Kernel Creation

2-16

Thrust Example
With Thrust library support in GPU Coder, you can take advantage of GPU-accelerated primitives
such as sort to implement complex high-performance parallel applications. When your MATLAB code
uses gpucoder.sort function instead of sort, GPU Coder can generate calls to the Thrust sort
primitives.

This example generates CUDA code to sort the columns of a matrix in descending order. In one file,
write an entry-point function mySort that accepts a matrix inputs A. Use the gpucoder.sort
function to sort the columns of A in descending order.

function B = mySort(A)
 B = gpucoder.sort(A, 1, 'descend');
end

Use the codegen function to generate CUDA MEX function.
codegen -config coder.gpuConfig('mex') -args {ones(1024,1024,'double')} -report mySort

Generated CUDA Code
The following is a snippet of the generated code. The Thrust library call is denoted by
thrustSortImpl
...
cudaMalloc(&gpu_inDims, 8ULL);
cudaMalloc(&gpu_B, 8388608ULL);
cudaMalloc(&gpu_A, 8388608ULL);
mySort_kernel1<<<dim3(1U, 1U, 1U), dim3(32U, 1U, 1U)>>>(*gpu_inDims);
cudaMemcpy(gpu_A, (void *)&A[0], 8388608ULL, cudaMemcpyHostToDevice);
mySort_kernel2<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(*gpu_A, *gpu_B);
cudaMemcpy(&inDims[0], gpu_inDims, 8ULL, cudaMemcpyDeviceToHost);
thrustSortImpl(&(*gpu_B)[0], 2, &inDims[0], 1, 'd', false);
cudaMemcpy(&B[0], gpu_B, 8388608ULL, cudaMemcpyDeviceToHost);
...

 Thrust Example

2-17

Legacy Code Integration
If you have highly optimized CUDA code for certain subfunctions that you want to incorporate into
your generated code, GPU Coder extends the coder.ceval functionality to help you achieve this
goal.

The external CUDA function must use the __device__ qualifier to execute the function on the GPU
device. These device functions are different from global functions (kernels) in that they can only be
called from other device or global functions. Therefore the coder.ceval calls to the device functions
must be from within a loop that gets mapped to a kernel.

Note Code generation fails if the loop containing the coder.ceval calls cannot be mapped to a
kernel. See the troubleshooting topic in the GPU Coder documentation to check for issues preventing
kernel creation and their suggested workarounds. If your MATLAB code section contains unsupported
functions, then you must remove the coder.ceval calls from such sections.

coder.ceval for GPU Coder
coder.ceval('-gpudevicefcn', 'devicefun_name',devicefun_arguments) is a subset of
the coder.ceval function from MATLAB Coder that allows you to call __device__ functions from
within kernels. '-gpudevicefcn' indicates to coder.ceval that the target function is on the GPU
device. devicefun_name is the name of the __device__ function and devicefun_arguments is a
comma-separated list of input arguments in the order that devicefun_name requires.

For code generation, you must specify the type, size, and complexity data type of the arguments
before calling coder.ceval.

This function is a code generation function and causes errors when used otherwise.

Legacy Code Example
The stereo disparity example measures the distance between two corresponding points in the left and
the right image of a stereo pair. The stereoDisparity_cuda_sample entry-point function calls the
__usad4_wrap external device function by using the coder.ceval function.
%% modified algorithm for stereo disparity block matching
% In this implementation instead of finding shifted image ,indices are mapped
% accordingly to save memory and some processing RGBA column major packed
% data is used as input for compatibility with CUDA intrinsics. Convolution
% is performed using separable filters (Horizontal and then Vertical)

function [out_disp] = stereoDisparity_cuda_sample(img0,img1)
coder.cinclude('cuda_intrinsic.h');

% gpu code generation pragma
coder.gpu.kernelfun;

%% Stereo disparity Parameters
% WIN_RAD is the radius of the window to be operated,min_disparity is the
% minimum disparity level the search continues for, max_disparity is the maximum
% disparity level the search continues for.
WIN_RAD = 8;
min_disparity = -16;
max_disparity = 0;

%% Image dimensions for loop control
% The number of channels packed are 4 (RGBA) so as nChannels are 4
[imgHeight,imgWidth]=size(img0);
nChannels = 4;
imgHeight = imgHeight/nChannels;

2 Kernel Creation

2-18

%% To store the raw differences
diff_img = zeros([imgHeight+2*WIN_RAD,imgWidth+2*WIN_RAD],'int32');

%To store the minimum cost
min_cost = zeros([imgHeight,imgWidth],'int32');
min_cost(:,:) = 99999999;

% Store the final disparity
out_disp = zeros([imgHeight,imgWidth],'int16');

%% Filters for aggregating the differences
% filter_h is the horizontal filter used in separable convolution
% filter_v is the vertical filter used in separable convolution which
% operates on the output of the row convolution
filt_h = ones([1 17],'int32');
filt_v = ones([17 1],'int32');

%% Main Loop that runs for all the disparity levels. This loop is currently
% expected to run on CPU.
for d=min_disparity:max_disparity

 % Find the difference matrix for the current disparity level. Expect
 % this to generate a Kernel function.
 coder.gpu.kernel;
 for colIdx=1:imgWidth+2*WIN_RAD
 coder.gpu.kernel;
 for rowIdx=1:imgHeight+2*WIN_RAD
 % Row index calculation
 ind_h = rowIdx - WIN_RAD;

 % Column indices calculation for left image
 ind_w1 = colIdx - WIN_RAD;

 % Row indices calculation for right image
 ind_w2 = colIdx + d - WIN_RAD;

 % Border clamping for row Indices
 if ind_h <= 0
 ind_h = 1;
 end
 if ind_h > imgHeight
 ind_h = imgHeight;
 end

 % Border clamping for column indices for left image
 if ind_w1 <= 0
 ind_w1 = 1;
 end
 if ind_w1 > imgWidth
 ind_w1 = imgWidth;
 end

 % Border clamping for column indices for right image
 if ind_w2 <= 0
 ind_w2 = 1;
 end
 if ind_w2 > imgWidth
 ind_w2 = imgWidth;
 end

 % In this step, Sum of absolute Differences is performed
 % across Four channels. This piece of code is suitable
 % for replacement with SAD intrinsics
 tDiff = int32(0);
 tDiff = coder.ceval('-gpudevicefcn', '__usad4_wrap',
 coder.rref(img0((ind_h-1)*(nChannels)+1,ind_w1)),
 coder.rref(img1((ind_h-1)*(nChannels)+1,ind_w2)));

 %Store the SAD cost into a matrix
 diff_img(rowIdx,colIdx) = tDiff;
 end
 end

 % Aggregating the differences using separable convolution. Expect this
 % to generate two Kernel using shared memory.The first kernel is the
 % convolution with the horizontal kernel and second kernel operates on
 % its output the column wise convolution.
 cost_v = conv2(diff_img,filt_h,'valid');
 cost = conv2(cost_v,filt_v,'valid');

 Legacy Code Integration

2-19

 % This part updates the min_cost matrix with by comparing the values
 % with current disparity level. Expect to generate a Kernel for this.
 for ll=1:imgWidth
 for kk=1:imgHeight
 % load the cost
 temp_cost = int32(cost(kk,ll));

 % compare against the minimum cost available and store the
 % disparity value
 if min_cost(kk,ll) > temp_cost
 min_cost(kk,ll) = temp_cost;
 out_disp(kk,ll) = abs(d) + 8;
 end

 end
 end

end
end

The definition for the __usad4_wrap is written in an external file cuda_intrinsic.h. The file is
located in the same folder as the entry-point function.
__device__ unsigned int __usad4(unsigned int A, unsigned int B, unsigned int C=0)
{
 unsigned int result;
#if (__CUDA_ARCH__ >= 300) // Kepler (SM 3.x) supports a 4 vector SAD SIMD
 asm("vabsdiff4.u32.u32.u32.add" " %0, %1, %2, %3;": "=r"(result):"r"(A),
 "r"(B), "r"(C));
#else // SM 2.0 // Fermi (SM 2.x) supports only 1 SAD SIMD,
 // so there are 4 instructions
 asm("vabsdiff.u32.u32.u32.add" " %0, %1.b0, %2.b0, %3;":
 "=r"(result):"r"(A), "r"(B), "r"(C));
 asm("vabsdiff.u32.u32.u32.add" " %0, %1.b1, %2.b1, %3;":
 "=r"(result):"r"(A), "r"(B), "r"(result));
 asm("vabsdiff.u32.u32.u32.add" " %0, %1.b2, %2.b2, %3;":
 "=r"(result):"r"(A), "r"(B), "r"(result));
 asm("vabsdiff.u32.u32.u32.add" " %0, %1.b3, %2.b3, %3;":
 "=r"(result):"r"(A), "r"(B), "r"(result));
#endif
 return result;
}

__device__ unsigned int packBytes(const uint8_T *inBytes)
{
 unsigned int packed = inBytes[0] | (inBytes[1] << 8) |
 (inBytes[2] << 16) | (inBytes[3] << 24);
 return packed;
}

__device__ unsigned int __usad4_wrap(const uint8_T *A, const uint8_T *B)
{
 unsigned int x = packBytes(A);
 unsigned int y = packBytes(B);

 return __usad4(x, y);
}

Generate CUDA Code
Generate CUDA code by creating a code configuration object. Specify the location of the custom C
files by setting custom code properties (CustomInclude) on configuration objects. The following is
an example code generation script that points to the location of cuda_intrinsic.h file.
cfg = coder.gpuConfig('mex');
cfg.CustomInclude = pwd;

codegen -config cfg -args {imgRGB0, imgRGB1} stereoDisparity_cuda_sample_intrinsic;

Generated Code
GPU Coder creates four kernels. The following is a snippet of the generated CUDA code.
e_stereoDisparity_cuda_sample_i<<<dim3(704U, 1U, 1U), dim3(512U, 1U, 1U)>>>
 (gpu_img1, gpu_img0, d, gpu_diff_img);*/

2 Kernel Creation

2-20

/* Aggregating the differences using separable convolution.*/
/* Expect this to generate two Kernel using shared memory.*/
/* The first kernel is the convolution with the horizontal kernel and*/
/* second kernel operates on its output the column wise convolution. */
f_stereoDisparity_cuda_sample_i<<<dim3(704U, 1U, 1U), dim3(512U, 1U, 1U)>>>
 (gpu_diff_img, gpu_a);
g_stereoDisparity_cuda_sample_i<<<dim3(18U, 20U, 1U), dim3(32U, 32U, 1U)>>>
 (gpu_a, gpu_cost_v);
h_stereoDisparity_cuda_sample_i<<<dim3(17U, 20U, 1U), dim3(32U, 32U, 1U)>>>
 (gpu_a, gpu_cost_v);
/* This part updates the min_cost matrix with by comparing the values */
/* with current disparity level. Expect to generate a Kernel for this. */
i_stereoDisparity_cuda_sample_i<<<dim3(667U, 1U, 1U), dim3(512U, 1U, 1U)>>>
 (d, gpu_cost, gpu_out_disp, gpu_min_cost);

The e_stereoDisparity_cuda_sample_i kernel is the one that calls the __usad4_wrap device
function. The following is a snippet of e_stereoDisparity_cuda_sample_i kernel code.
static __global__ __launch_bounds__(512, 1) void e_stereoDisparity_cuda_sample_i
 (const uint8_T *img1, const uint8_T *img0, int32_T d, int32_T *diff_img)
{
 ...
 /* In this step, Sum of absolute Differences is performed */
 /* across Four channels. This piece of code is suitable */
 /* for replacement with SAD intrinsics */
 temp_cost = __usad4_wrap(&img0[((ind_h - 1) << 2) + 2132 * (ind_w1 - 1)],
 &img1[((ind_h - 1) << 2) + 2132 * (temp_cost - 1)]);

 /* Store the SAD cost into a matrix */
 diff_img[rowIdx + 549 * colIdx] = temp_cost;
 }
}

See Also
coder.gpu.constantMemory | coder.gpu.kernel | coder.gpu.kernelfun |
gpucoder.matrixMatrixKernel | gpucoder.stencilKernel

Related Examples
• “Design Patterns” on page 2-22
• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Kernels from Library Calls” on page 2-8

 Legacy Code Integration

2-21

Design Patterns
GPU Coder supports some design patterns that map efficiently to GPU structures.

Stencil Processing
Stencil kernel operations compute each element of the output array as a function of a small region of
the input array. You can express many filtering operations as a stencil operation. Examples include
convolution, median filtering, and finite element methods.

In the GPU Coder implementation of the stencil kernel, each thread computes one element of the
output array. Because a given input element is accessed repeatedly for computing multiple
neighboring output elements, GPU Coder uses shared memory to improve memory bandwidth and
data locality.

Use the gpucoder.stencilKernel function and create CUDA code for stencil functions. For an
example that demonstrates stencil preocessing, see “Stencil Processing on GPU”.

For very large input sizes, the gpucoder.stencilKernel function may produce CUDA code that
does not numerically match the MATLAB simulation. In such cases, consider reducing the size of the
input to produce accurate results..

Matrix-Matrix Processing
Many scientific applications contain matrix-matrix operations including the GEneral Matrix to Matrix
Multiplication (GEMM), of the form C = AB where you can optionally transpose A and B. The code for
such matrix-matrix operations typically takes the pattern:

for x = 1:M
 for y = 1:N
 for z = 1:K
 C(x,y) = F(A(x,z),B(z,y));
 end
 end
end

2 Kernel Creation

2-22

where F() is a user-defined function. In these operations, a row from one input matrix and a column
from the second input matrix is used to compute the corresponding element of the output matrix.
Every thread reloads the row and column. This design pattern allows optimization of this structure by
reusing data and making each thread compute multiple output elements.

For example, F() can be a regular matrix multiply, F()=@mtimes. For such patterns, GPU Coder
provides the MatrixMatrix kernel to create a highly efficient, fast implementation of matrix-matrix
operations on the GPU.

Use the gpucoder.matrixMatrixKernel function and create CUDA code for performing matrix-
matrix type operations.

See Also
coder.gpu.constantMemory | coder.gpu.kernel | coder.gpu.kernelfun |
gpucoder.matrixMatrixKernel | gpucoder.stencilKernel

Related Examples
• “Stencil Processing on GPU”

More About
• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Scatter-Gather Type Operations” on page 2-4
• “Kernels from Library Calls” on page 2-8
• “Legacy Code Integration” on page 2-18

 Design Patterns

2-23

GPU Memory Allocation and Minimization

Discrete and Managed Modes
GPU Coder provides you access to two different memory allocation (malloc) modes available in the
CUDA programming model, cudaMalloc and cudaMallocManaged. cudaMalloc API is applicable
to the traditionally separate CPU, and GPU global memories. cudaMallocManaged is applicable to
Unified Memory.

From a programmer point of view, a traditional computer architecture requires that data be allocated
and shared between the CPU and GPU memory spaces. The need for applications to manage data
transfers between these two memory spaces adds to increased complexity. Unified memory creates a
pool of managed memory, shared between the CPU and the GPU. The managed memory is accessible
to both the CPU and the GPU through a single pointer. Unified memory attempts to optimize memory
performance by migrating data to the device that needs it, at the same time hiding the migration
details from the program. Though unified memory simplifies the programming model, it requires
device-sync calls when data written on the GPU is being accessed on the CPU. GPU Coder inserts
these synchronization calls. According to NVIDIA, unified memory can provide significant
performance benefits when by using CUDA 8.0, or when targeting embedded hardware like the
NVIDIA Tegra®.

To change the memory allocation mode in the GPU Coder app, use the Malloc Mode drop-down box
under More Settings->GPU Coder. When using the command-line interface, use the MallocMode
build configuration property and set it to either 'discrete' or 'unified'.

Memory Minimization
GPU Coder analyzes the data dependency between CPU and GPU partitions and performs
optimizations to minimize the number of cudaMemcpy function calls in the generated code. The
analysis also determines the minimum set of locations where data must be copied between CPU and
GPU by using cudaMemcpy.

For example, the function foo has sections of code that process data sequentially on the CPU and in
parallel on the GPU.

function [out] = foo(input1,input2)
 …
 % CPU work
 input1 = …
 input2 = …
 tmp1 = …
 tmp2 = …
 …
 % GPU work
 kernel1(gpuInput1, gpuTmp1);
 kernel2(gpuInput2, gpuTmp1, gpuTmp2);
 kernel3(gpuTmp1, gpuTmp2, gpuOut);

 …
 % CPU work
 … = out

end

2 Kernel Creation

2-24

An unoptimized CUDA implementation can potentially have multiple cudaMemcpy function calls to
transfer all inputs gpuInput1,gpuInput2, and the temporary results gpuTmp1,gpuTmp2 between
kernel calls. Because the intermediate results gpuTmp1,gpuTmp2 are not used outside the GPU, they
can be stored within the GPU memory resulting in fewer cudaMemcpy function calls. These
optimizations improve overall performance of the generated code. The optimized implementation is:

gpuInput1 = input1;
gpuInput2 = input2;

kernel1<<< >>>(gpuInput1, gpuTmp1);
kernel2<<< >>>(gpuInput2, gpuTmp1, gpuTmp2);
kernel3<<< >>>(gpuTmp1, gpuTmp2, gpuOut);

out = gpuOut;

To eliminate redundant cudaMemcpy calls, GPU Coder analyzes all uses and definitions of a given
variable and uses status flags to perform minimization. An example of the original code and what the
generated code looks like is shown in this table.

Original Code Optimized Generated Code
A(:) = …
…
for i = 1:N
 gB = kernel1(gA);
 gA = kernel2(gB);

 if (somecondition)
 gC = kernel3(gA, gB);
 end
 …
end
…
… = C;

A(:) = …
A_isDirtyOnCpu = true;
…
for i = 1:N
 if (A_isDirtyOnCpu)
 gA = A;
 A_isDirtyOnCpu = false;
 end
 gB = kernel1(gA);
 gA = kernel2(gB);
 if (somecondition)
 gC = kernel3(gA, gB);
 C_isDirtyOnGpu = true;
 end
 …
end
…
if (C_isDirtyOnGpu)
 C = gC;
 C_isDirtyOnGpu = false;
end
… = C;

The _isDirtyOnCpu flag tells the GPU Coder memory optimization about routines where the given
variable is declared and used either on the CPU or on then GPU.

 GPU Memory Allocation and Minimization

2-25

Support for GPU Arrays
You can use GPU arrays as input and output arguments to an entry-point function when generating
CUDA MEX, source code, static libraries, dynamic libraries, and executables. Depending on whether
a given input to the entry-point function is identified as CPU or GPU based input and depending on
the usage of the variable (used on the GPU or on the CPU) cudaMemcpy calls are inserted efficiently
in the generated code. By using the GPU array functionality you can minimize the number of
cudaMemcpy calls in the generated code.

To use this functionality, do one of the following:

• Use coder.typeof to represent the gpuArray type of an entry-point function input. For
example:

coder.typeof(rand(20),'Gpu',true);

• Use the gpuArray function. For example:

in = gpuArray(rand(1,10));
codegen -config cfg -args {in} test

Considerations
• GPU Coder supports all numeric and logical types. char and half data types are not supported.

For using variable dimension arrays, only the bounded types are supported. Scalar GPU arrays,
structures, cell-arrays, classes, enumerated types, and fixed-point data types are not supported.

• The code generator supports all target types for GPU arrays - 'mex', 'lib', 'dll', and 'exe'.
For 'lib', 'dll', and 'exe' targets, you must pass the correct pointers to the entry-point
function in the example main function. For example, if an input is marked as 'Gpu', a GPU pointer
should be passed when the entry-point is called from main function. Software-In-the-Loop (SIL) is
supported for 'lib' and 'dll'.

• The memory allocation (malloc) mode property of the code configuration object must be set to to
be 'discrete'. For example,

cfg.GpuConfig.MallocMode = 'discrete';

GPU arrays are not supported in the 'unified' memory mode.
• During code generation, If one input to entry-point function is of the GPU array, then the output

variables are all GPU array types, provided they are supported for GPU code generation. For
example. if the entry-point function returns a struct and because struct is not supported, the
generated code returns a CPU output. However, if a supported matrix type is returned, then the
generated code returns a GPU output.

See Also
coder.gpu.constantMemory | coder.gpu.kernel | coder.gpu.kernelfun |
gpucoder.matrixMatrixKernel | gpucoder.stencilKernel

Related Examples
• “Kernels from Element-Wise Loops” on page 2-2
• “Kernels from Scatter-Gather Type Operations” on page 2-4

2 Kernel Creation

2-26

• “Kernels from Library Calls” on page 2-8
• “Design Patterns” on page 2-22

 Support for GPU Arrays

2-27

Troubleshooting

Three of the most common reasons why GPU Coder generated code is not performing as expected
are:

• CUDA kernels are not created.
• Host to device and device to host memory transfers (cudaMemcpy) are throttling performance.
• Not enough parallelism or device issues.

Common causes for these symptoms and the process of using the built-in screener to detect these
issues are discussed in the following topics. these topics also provide information on how to work
around for these issues and generate more efficient CUDA code.

3

Workflow
1 GPU Coder relies on functionality provided by MATLAB Coder, so the first step in the

troubleshooting process is to ensure that you have MATLAB Coder compatible code. To see
programming requirements and best practices for MATLAB Coder, see “MATLAB Programming
for Code Generation” (MATLAB Coder).

2 GPU Coder has varying support for functions compatible with MATLAB Coder and Image
Processing Toolbox. A list of the functions that have been tested with GPU Coder is provided in
“MATLAB Algorithm Design for GPU”. These functions are categorized into ones that are fully
supported, functions that are unsupported, and functions that are supported under certain
conditions. For example, there are certain functions that work in vector-based operations but not
when used within a loop body. It is however recommended where possible to rewrite the toolbox
functions with pure MATLAB.

3 GPU Coder uses program parallelism analysis to detect parallel for loops. Traditional serial
algorithms can vary significantly in how parallelizable they are. Some problems are
embarrassingly parallel and are easy to divide up into pieces. On the other hand, some
algorithms require some amount of refactoring to expose their inherent parallelism. The parallel
analysis that GPU Coder performs is conservative. As a result there are cases where loops are
truly parallel, but dependence analysis fails to detect the parallelism.

4 Loops must be statically bound to determine kernel dimensions. For example, while loops, loops
with break statements and loops whose iteration range cannot be statically determinable are not
easily mappable to CUDA kernels and have to be rewritten. Refer to the section on kernel
analysis for more information.

5 After considering and rectifying these issues, you are now ready to generate CUDA code. The
easiest way to accomplish code generation is to drop in the pragma coder.gpu.kernelfun in
to the entry point function. You can then follow the steps described in “Get Started with GPU
Coder” to generate CUDA code from either the command line or by using GPU Coder app.

6 To assess the performance of generated CUDA code, we can use MATLAB tic and toc functions
and determine execution time. If the resulting GPU acceleration is not satisfactory, you can
perform advance diagnostics like:

• Kernel analysis
• Memory bottleneck analysis
• Analysis with NVIDIA Visual Profiler (nvvp) tool

3 Troubleshooting

3-2

See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 3-5
• “Kernel Analysis” on page 3-18

 Workflow

3-3

• “Memory Bottleneck Analysis” on page 3-22
• “Analyze Execution Profiles of the Generated Code” on page 3-24

3 Troubleshooting

3-4

Code Generation Reports
In this section...
“Report Generation” on page 3-5
“Report Location” on page 3-6
“Errors and Warnings” on page 3-6
“Files and Functions” on page 3-6
“MATLAB Source” on page 3-6
“Generated Code” on page 3-8
“MATLAB Variables” on page 3-8
“Tracing Code” on page 3-9
“Code Insights” on page 3-10
“Additional Reports” on page 3-10
“Report Limitations” on page 3-10

GPU Coder produces a code generation report that helps you to:

• Debug code generation issues and verify that your MATLAB code is suitable for code generation.
• View generated CUDA code.
• Trace between MATLAB source code and generated CUDA code.
• See how the code generator determines and propagates type information for variables and

expressions in your MATLAB code.
• Identify potential issues in the generated code.
• Access additional reports available with Embedded Coder®.

Report Generation
When you enable report generation or when an error occurs, the code generator produces a code
generation report. To control production and opening of a code generation report, use app settings,
codegen options, or configuration object properties.

In the GPU Coder app:

• To generate a report, set Always create a report to Yes.
• If you want the app to open the report for you, set Automatically launch a report if one is

generated to Yes.

At the command line, use codegen options:

• To generate a report, use the -report option.
• To generate and open a report, use the -launchreport option.

Alternatively, use the configuration object properties (coder.CodeConfig):

• To generate a report, set GenerateReport to true.
• If you want codegen to open the report for you, set LaunchReport to true.

 Code Generation Reports

3-5

Report Location
The code generation report is named report.mldatx. It is located in the html subfolder of the code
generation output folder. If you have MATLAB R2018a or later, you can open the report.mldatx file
by double-clicking it.

Errors and Warnings
View code generation error, warning, and information messages on the All Messages tab. To
highlight the source code for an error or warning, click the message. It is a best practice to address
the first message because subsequent errors and warnings can be related to the first message.

View compilation and linking errors and warnings on the Build Logs tab.

Files and Functions
The report lists MATLAB source functions and generated files. In the MATLAB Source pane, the
Function List view organizes functions according to the containing file. To visualize functions
according to the call structure, use the Call Tree view.

To view a function in the code pane of the report, click the function in the list. Clicking a function
opens the file that contains the function. To edit the selected file in the MATLAB Editor, click Edit in
MATLAB or click a line number in the code pane.

If you have Embedded Coder and generate the report with traceability enabled, to view the source
code and generated code next to each other in the code pane, click Trace Code. You can interactively
trace between the source code and the generated code. See “Interactively Trace Between MATLAB
Code and Generated C/C++ Code” (Embedded Coder).

If you want to move the generated files for standalone code (library or executable) to another
development environment, you can put them into a zip file by clicking Package Code.

Specialized Functions or Classes

When a function is called with different types of inputs or a class uses different types for its
properties, the code generator produces specializations. In the MATLAB Source pane, numbered
functions (or classes) indicate specializations. For example:

MATLAB Source
To view a MATLAB function in the code pane, click the function in the MATLAB Source pane. To see
information about the type of a variable or expression, pause over the variable or expression.

In the code pane, syntax highlighting of MATLAB source code helps you to identify MATLAB syntax
elements. Syntax highlighting also helps you to identify certain code generation attributes such as
whether a function is extrinsic or whether an argument is constant.

3 Troubleshooting

3-6

CUDA Kernels

The green GPU marker next to mandelbrot_count function indicates that the generated code has
both CPU and GPU sections. The green vertical bar indicates the lines of code that are mapped to the
GPU. To see information about the type of a variable or expression and the name of the corresponding
GPU Kernel Function, pause over the variable or expression. When you select highlighted code by
clicking it, the code becomes blue and you can see the information even when you move your pointer
away from the selection. The code remains selected until you press Esc or select different code.

Extrinsic Functions

In the MATLAB code, the report identifies an extrinsic function with purple text. The information
window indicates that the function is extrinsic.

Constant Arguments

In the MATLAB code, orange text indicates a compile-time constant argument to an entry-point
function or a specialized function. The information window includes the constant value.

 Code Generation Reports

3-7

Knowing the value of the constant arguments helps you to understand generated function signatures.
It also helps you to see when code generation created function specializations for different constant
argument values.

To export the value to a variable in the workspace, click .

Generated Code
To view a generated CUDA source or header file in the code pane, click the file in the Files tab on the
Generated Code pane. The GPU Kernels tab on the Generated Code pane contains the list of
CUDA kernels in the generated code. Click on the kernel name to navigate directly to the definition of
the corresponding kernel in the generated code.

MATLAB Variables
The Variables tab provides information about the variables for the selected MATLAB function. To
select a function, click the function in the MATLAB Source pane.

The variables table shows:

• Class, size, and complexity
• Properties of fixed-point types

This information helps you to debug errors, such as type mismatch errors, and to understand how the
code generator propagates types and represents data in the generated code.

Visual Indicators on the Variables Tab

This table describes symbols, badges, and other indicators in the variables table.

Column in the Variables
Table

Indicator Description

Name expander Variable has elements or
properties that you can see by
clicking the expander.

Name {:} Heterogeneous cell array (all
elements have the same
properties)

Name {n} nth element of a heterogeneous
cell array

3 Troubleshooting

3-8

Column in the Variables
Table

Indicator Description

Class v > n v is reused with a different
class, size, and complexity. The
number n identifies each unique
reuse (a reuse with a unique set
of properties). When you pause
over a renamed variable, the
report highlights only the
instances of this variable that
share the class, size, and
complexity.

Size :n Variable-size dimension with an
upper bound of n

Size :? Variable-size with no upper
bound

Size italics Variable-size array whose
dimensions do not change size
during execution

Class sparse prefix Sparse array
Class complex prefix Complex number

Array Layout Indicators on the Variables Tab

This table describes the badges that indicate array layout in the variables table.

Badge Description
Row-major array layout.

Column-major array layout.

A mixture of row-major and column-major
layouts.

See “Row-Major and Column-Major Array Layouts” (MATLAB Coder).

Tracing Code
You can trace between MATLAB source code and generated CUDA code by using one of these
methods:

• Interactively visualize the mapping between the MATLAB code and the generated code. To access
interactive tracing, in the report, click Trace Code. The Trace Code button is enabled only if you
have Embedded Coder and you enabled code traceability when you generated code. See
“Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder).

• Include source code as comments in the generated CUDA code. In a comment, the code generator
produces a tag that helps you find the corresponding MATLAB source code. If you have Embedded
Coder, the tag is a link to the source code. See “Trace Between Generated CUDA Code and
MATLAB Source Code” on page 3-11.

 Code Generation Reports

3-9

Code Insights
The code generator can detect and report issues that can potentially occur in the generated code.
View the messages on the Code Insights tab. The issues include:

• Potential differences between the behavior of the generated code and the behavior of the MATLAB
code. The report includes potential differences messages only if you enabled potential differences
reporting. See “Potential Differences Reporting” (MATLAB Coder).

• GPU code generation diagnostics report that identifies issues during code generation and
suggests potential solutions to maximize performance.

• Potential row-major issues. See “Code Design for Row-Major Array Layout” (MATLAB Coder).

Additional Reports
The Summary tab can have links to these additional reports:

• GPU code metrics report. See “Generating a Static Code Metrics Report for Code Generated from
MATLAB Code” (Embedded Coder).

Report Limitations
• The report does not show full information for unrolled loops. It displays data types of one arbitrary

iteration.
• The report does not show information about dead code.

See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 3-

15
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 3-11
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder)
• “Row-Major and Column-Major Array Layouts” (MATLAB Coder)

3 Troubleshooting

3-10

Trace Between Generated CUDA Code and MATLAB Source
Code

This example shows how to trace (highlight sections) between MATLAB source code and the
generated CUDA code. Tracing between source code and generated code helps you to:

• Understand how the code generator maps your algorithm to GPU kernels.
• Debug issues in the generated code.
• Evaluate the quality of the generated code.

You can trace by using one of these methods:

• Configure GPU Coder to generate code that includes the MATLAB source code as comments. In
the comments, a traceability tag immediately precedes each line of source code. The traceability
tag provides details about the location of the source code. If you have Embedded Coder, in the
code generation report, the traceability tags link to the corresponding MATLAB source code.

• With Embedded Coder, produce a code generation report that includes interactive traceability.
Interactive tracing in the report helps you to visualize the mapping between the MATLAB source
code and the generated C/C++ code. See “Interactively Trace Between MATLAB Code and
Generated C/C++ Code” (Embedded Coder).

Generate Traceability Tags
Create the MATLAB Source Code

To illustrate traceability tags, this example uses an implementation of the Mandelbrot set by using
standard MATLAB commands running on the CPU. This implementation is based on the code provided
in the Experiments with MATLAB e-book by Cleve Moler.

The Mandelbrot set is the region in the complex plane consisting of the values z0 for which the
trajectories defined by this equation remain bounded at k→∞.

zk + 1 = zk
2 + z0, k = 0, 1, …

Create a MATLAB function called mandelbrot_count.m with the following lines of code. This code
is a vectorized MATLAB implementation of the Mandelbrot set. For every point (xGrid,yGrid) in
the grid, it calculates the iteration index count at which the trajectory defined by the equation
reaches a distance of 2 from the origin. It then returns the natural logarithm of count, which is used
generate the color coded plot of the Mandelbrot set.

function count = mandelbrot_count(maxIterations,xGrid,yGrid)
% Add kernelfun pragma to trigger kernel creation
coder.gpu.kernelfun;
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

z = z0;
for n = 0:maxIterations
 z = z.*z + z0;
 inside = abs(z)<=2;

 Trace Between Generated CUDA Code and MATLAB Source Code

3-11

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/exm/chapters/mandelbrot.pdf

 count = count + inside;
end
count = log(count);

Create Test Vectors

Create test vectors for the entry-point function by using the following lines of code. The script
generates a 1000 x 1000 grid of real parts (x) and imaginary parts (y) between the limits specified by
xlim and ylim. You can use these inputs to validate the mandelbrot_count entry-point function
and plots the resulting Mandelbrot set.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

x = linspace(xlim(1),xlim(2),gridSize);
y = linspace(ylim(1),ylim(2),gridSize);
[xGrid,yGrid] = meshgrid(x,y);

Generate Traceability Tags

To produce traceability tags in the generated code, enable generation of MATLAB source code as
comments.

• In the GPU Coder app, set MATLAB source code as comments to Yes.
• In a code generation configuration object, create a coder.gpuConfig object and set the

MATLABSourceComments property to true.
cfg = coder.gpuConfig('dll','ecoder',true);
cfg.GenerateReport = true;
cfg.MATLABSourceComments = true;
cfg.GpuConfig.CompilerFlags = '--fmad=false';
codegen -config cfg -args {maxIterations,xGrid,yGrid} mandelbrot_count

Note The --fmad=false flag when passed to the nvcc, instructs the compiler to disable
Floating-Point Multiply-Add (FMAD) optimization. This option is set to prevent numerical
mismatch in the generated code because of architectural differences in the CPU and the GPU. For
more information, see “Numerical Differences Between CPU and GPU”.

Access the Report

To open the code generation report, click View report.

The code generation report is named report.mldatx. It is located in the html subfolder of the code
generation output folder. If you have MATLAB R2018a or later, you can open the report.mldatx file
by double-clicking it.

In the MATLAB Source pane, select mandelbrot_count.m. You see the MATLAB source code in
the code pane.

3 Troubleshooting

3-12

The green GPU marker next to mandelbrot_count function indicates that the generated code has
both CPU and GPU sections. The green vertical bar indicates the lines of code that are mapped to the
GPU. To see information about the type of a variable or expression and the name of the corresponding
GPU Kernel Function, pause over the variable or expression. When you select highlighted code by
clicking it, the code becomes blue and you can see the information even when you move your pointer
away from the selection. The code remains selected until you press Esc or select different code.

To view the CUDA code generated for the mandelbrot_count.m entry-point function, select
mandelbrot_count.cu from the Generated Code pane.

Format of Traceability Tags
In the generated code, traceability tags appear immediately before the MATLAB source code in the
comment. The format of the tag is:
<filename>:<line number>.

For example, this comment indicates that the code z0 = xGrid + 1i*yGrid; appears at line 5 in
the source file mandelbrot_count.m.

/* 'mandelbrot_count:5' z0 = xGrid + 1i*yGrid;

 Trace Between Generated CUDA Code and MATLAB Source Code

3-13

Traceability Tag Limitations
• You cannot include MATLAB source code as comments for:

• MathWorks® toolbox functions
• P-code

• The appearance or location of comments can vary:

• Even if the implementation code is eliminated, for example, due to constant folding, comments
can still appear in the generated code.

• If a complete function or code block is eliminated, comments can be eliminated from the
generated code.

• For certain optimizations, the comments can be separated from the generated code.
• Even if you do not choose to include source code comments in the generated code, the

generated code includes legally required comments from the MATLAB source code.
• Functions with multiple outputs do not get highlighted.
• Calls to coder functions such as coder.nullcopy will not be highlighted
• Code that gets mapped to library calls such as cuDNN, cuBLAS and cuFFT will not be highlighted.

As a result, functions that are completely mapped to GPU may be tagged incorrectly.

See Also
codegen | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuConfig

Related Examples
• “Code Generation by Using the GPU Coder App”
• “Code Generation Using the Command Line Interface”
• “Code Generation Reports” on page 3-5
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 3-

15

3 Troubleshooting

3-14

Generating a GPU Code Metrics Report for Code Generated
from MATLAB Code

The GPU static code metrics report contains the results of static analysis of the generated CUDA
code, including information on the generated CUDA kernels, thread and block dimensions, memory
usage and other statistics. To produce a static code metrics report, you must use GPU Coder to
generate standalone CUDAcode and produce a code generation report. See “Code Generation
Reports” on page 3-5.

By default, static code metrics analysis does not run at code generation time. Instead, if and when
you want to run the analysis and view the results, click GPU Code Metrics on the Summary tab of
the code generation report.

Example GPU Code Metrics Report
This example runs GPU static code metrics analysis and examines a static code metrics report.

Create a MATLAB function called mandelbrot_count.m with the following lines of code. This code
is a vectorized MATLAB implementation of the Mandelbrot set. For every point (xGrid,yGrid) in
the grid, it calculates the iteration index count at which the trajectory defined by the equation
reaches a distance of 2 from the origin. It then returns the natural logarithm of count, which is used
generate the color coded plot of the Mandelbrot set.

function count = mandelbrot_count(maxIterations,xGrid,yGrid)
% Add kernelfun pragma to trigger kernel creation
coder.gpu.kernelfun;
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

z = z0;
for n = 0:maxIterations
 z = z.*z + z0;
 inside = abs(z)<=2;
 count = count + inside;
end
count = log(count);

Create sample data with the following lines of code. The code generates a 1000 x 1000 grid of real
parts (x) and imaginary parts (y) between the limits specified by xlim and ylim.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

x = linspace(xlim(1),xlim(2),gridSize);
y = linspace(ylim(1),ylim(2),gridSize);
[xGrid,yGrid] = meshgrid(x,y);

Enable production of a code generation report by using a configuration object for standalone code
generation (static library, dynamically linked library, or executable program).
cfg = coder.gpuConfig('dll');
cfg.GenerateReport = true;

 Generating a GPU Code Metrics Report for Code Generated from MATLAB Code

3-15

cfg.MATLABSourceComments = true;
cfg.GpuConfig.CompilerFlags = '--fmad=false';

Note The --fmad=false flag when passed to the nvcc, instructs the compiler to disable Floating-
Point Multiply-Add (FMAD) optimization. This option is set to prevent numerical mismatch in the
generated code because of architectural differences in the CPU and the GPU. For more information,
see “Numerical Differences Between CPU and GPU”.

Alternatively, use the codegen -report option.

Generate code by using codegen. Specify the type of the input argument by providing an example
input with the -args option. Specify the configuration object by using the -config option.

codegen -config cfg -args {maxIterations,xGrid,yGrid} mandelbrot_count

To open the code generation report, click View report.

To run the static code metrics analysis and view the code metrics report, on the Summary tab of the
code generation report, click GPU Code Metrics.

Explore the code metrics report
1 To see the information on the generated CUDA kernels, click CUDA Kernels.

• Kernel Name contains the list of generated CUDA kernels. By default, GPU Coder prepends
the kernel name with the name of the entry-point function.

• Thread Dimensions is an array of the form [Tx,Ty,Tz] that identifies the number of
threads in the block along dimensions x, y, and z.

• Block Dimensions is an array of the form [Bx,By,1] is an array that defines the number of
blocks in the grid along dimensions x and y (z not used).

• Shared Memory Size and Constant Memory columns provide metrics on the shared and
constant memory space usage in the generated code.

• Minimum BlocksPerSM is the minimum number of blocks per streaming multiprocessor
and indicates the number of blocks with which to launch the kernels.

To navigate from the report to the generated kernel code, click a kernel name.
2 To see the variables that have memory allocated on the GPU device, go to the CUDA Malloc

section.

3 Troubleshooting

3-16

3 To view information on the cudaMemCpy calls in the generated code, click CUDA Memcpy.

Limitations
• If you have the Embedded Coder product, the code configuration object contains the

GenerateCodeMetricsReport property to enable static metric report generation at compile
time. GPU Coder does not honor this setting and has no effect during code generation.

See Also
codegen | coder.CodeConfig | coder.EmbeddedCodeConfig | coder.gpuConfig

More About
• “Code Generation Reports” on page 3-5
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder)
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 3-11
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”

 Generating a GPU Code Metrics Report for Code Generated from MATLAB Code

3-17

Kernel Analysis
In this section...
“Mapping Nested Loops to Kernels” on page 3-18
“For-Loops with Break” on page 3-19
“Dependence Analysis Parallel Loop Check Fails” on page 3-19
“Logical Indexing of Arrays” on page 3-20
“Unsupported Functions” on page 3-20
“Loop Interchange” on page 3-20

For GPU code generation, the primary mechanism for creating CUDA kernels is by using for-loops.
The way you write loops in your MATLAB code has a significant impact on the number of kernels
created as well as the performance of the generated code. When you generate GPU code, check the
diagnostic report to see if your loop segment has Loop not parallelized notices. Calls to
MATLAB functions in your code may also have for-loops that contain these notices. To get maximum
performance, you want to ensure that compute intensive loop segments in your code are mapped to
kernels and executed in parallel. The following recommendations help you in achieving this goal and
generating efficient CUDA kernels.

Mapping Nested Loops to Kernels
Condition

Consider a function that has nested for-loops.

function y = foo(x)
 ...
 for i1 = 1:N1
 for i2 = 1:N2
 for i3 = 1:N3
 for i4 = 1:N4
 ...
 end
 end
 end
 end

Assume that one of the intermediate loop i3 is not parallelizable. When performs loop analysis to
create kernels,GPU Coder it considers only the outermost parallel loops i1,i2 and creates a kernel
with the outer loop dimensions N1,N2. The loops i3,i4 are within the kernel body and are executed
sequentially. However if the innermost i4 is large (iteration), then better performance may be
achieved by creating kernels for the innermost loop.

Action

There are three ways in which you can parallelize the innermost loop:

• Rewrite the code so that the innermost code segment is not within a nested loop.
• If the iteration size of the outer loop is small, then attach the loop to a coder.unroll function.

This function unrolls the for-loop by making a copy of the loop body for each loop iteration. For
more information, see coder.unroll.

3 Troubleshooting

3-18

function y = foo(x)
 ...
 for i1 = coder.unroll(1:N1)
 ...
 end

• Make the outer loop dimension as dynamic bound. This way parallel loop analysis fails on the
outer loop, whereas it succeeds on the inner loops.

function y = foo(x,N1)
 ...
 for i1 = 1:N1
 ...
 end

For-Loops with Break
Condition

Loops with break are not supported.

while (i < N)
 ...
 ...
 if (cond2)
 ...
 ...
 break;
 end
end

Action

Remove breaks by creating a guard variable and conditional.

cond = true;
while (i< N)
 if(cond)
 ...
 ...
 if(cond2)
 cond = false;
 end
 end
end

Dependence Analysis Parallel Loop Check Fails
Condition

Kernel extraction use parallel loop dependence analysis. There are cases where loop dependence
analysis cannot detect a parallel for loop. The coder.gpu.kernel allows GPU Coder to override
dependence analysis and force kernel creation. The caveat is for user to be sure that the loop is “for-
all” loop with no inter-iteration dependencies.

 Kernel Analysis

3-19

Action

Use coder.gpu.kernel pragma explicitly on each of your for-loops.

Logical Indexing of Arrays
Condition

GPU Coder may not create kernels when logical indexing is used for accessing array elements.

i = (mag ~= 0);
vx(i) = vx(i)./mag(i);
vy(i) = vy(i)./mag(i);

Action

Rewrite the code by using a loop body and guarding with an appropriate conditional.

for i = 1:numel(mag)
 if (mag(i) ~= 0)
 vx(i) = vx(i)./mag(i);
 vy(i) = vy(i)./mag(i);
 end
end

Unsupported Functions
Condition

Use of unsupported functions, coder pragmas, toolbox functions etc. inside a loop prevents them from
becoming a kernel.

Action

Try rewriting unsupported functions using pure MATLAB.

Loop Interchange
Condition

If smaller loops in a loop nest are the outer most loops, then a kernel could be created with just a
subset of the loops in the nesting. If algorithm allows it, always put the largest loops in the outermost
nesting.

Action

Rewrite loop nesting with larger loops as outer loops.

See Also

More About
• “Code Generation Using the Command Line Interface”

3 Troubleshooting

3-20

• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 3-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 3-11
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 3-15
• “Memory Bottleneck Analysis” on page 3-22
• “Analyze Execution Profiles of the Generated Code” on page 3-24

 Kernel Analysis

3-21

Memory Bottleneck Analysis
In this section...
“Data Alignment” on page 3-22
“Small Data Sizes” on page 3-22
“Too Many cudaMemcpys” on page 3-22
“Constant Inputs” on page 3-22
“Stack Memory Usage” on page 3-23

Data Alignment
Condition

MATLAB is column major but the algorithm could be implemented for an optimized row-major
implementation. In the generated code, if your fastest changing dimension is not the innermost loop,
then memory is not coalesced. Often, transposing the input matrices can simply fix this problem.

Action

Try transposing the data.

Small Data Sizes
Condition

If your problem/data size is too small, then the overhead of moving data to GPU (even if it is just at
the I/O boundary) can offset any performance gains of running on the GPU.

Action

Try the algorithm with larger data sizes.

Too Many cudaMemcpys
Condition

If you use only coder.gpu.kernel, then everything outside the loop goes to the CPU. To try to keep
most of the code on the GPU, use of both pragmas is recommended. Also, presence of unsupported
functions or any function/statement that cannot run on the GPU, causes more cudaMemcpys to be
generated.

Action

Use coder.gpu.kernelfun in addition to coder.gpu.kernel

Constant Inputs
Recommendation

If certain inputs of your entry-point function are constant, wrap them using the coder.const object.
Use of coder.const object indicates that these variables are constant during code generation.

3 Troubleshooting

3-22

Without this function, GPU Coder considers these inputs to be variables and hence treats all matrices
sized by these variables as variable-dimension matrices. GPU Coder does not create good kernels out
of variable-dimension matrices since currently there is no support for dynamic sizing of kernels or
dynamic cudaMemcpy function calls.

Stack Memory Usage
Recommendation

Using large stack memory inside kernels can reduce the performance of the generated code. Under
such conditions consider rewriting the algorithm in a different fashion or breaking it into smaller
computations to reduce stack memory usage and improve performance.

See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 3-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 3-11
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 3-15
• “Kernel Analysis” on page 3-18
• “Analyze Execution Profiles of the Generated Code” on page 3-24

 Memory Bottleneck Analysis

3-23

Analyze Execution Profiles of the Generated Code
This example shows you how to perform fine grain analysis for a MATLAB algorithm and its
generated CUDA code through software-in-the-loop (SIL) execution profiling. The Embedded Coder
product must be installed to generate the execution profiling report.

Note The profiling workflow depends on the nvprof tool from NVIDIA. In CUDA toolkit v10.1,
NVIDIA restricts access to performance counters to only admin users. To enable GPU performance
counters to be used by all users, see the instructions provided in https://developer.nvidia.com/nvidia-
development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters.

Create a Design File
For this example create a entry-point function that performs N-D fast Fourier transform. Use the
coder.gpu.kernelfun pragma to map the FFT to the GPU. By default, the EnableCUFFT property
is enabled, so the code generator uses cuFFT library to perform the FFT operation.

function [Y] = gpu_fftn(X)
 coder.gpu.kernelfun();
 Y = fftn(X);
end

Generate the Execution Profiling Report
Use the gpucoder.profile function to generate the execution profiling report.
cfg = coder.gpuConfig('exe');
cfg.GpuConfig.MallocMode = 'discrete';
gpucoder.profile('gpu_fftn',{rand(2,4500,4)},'CodegenConfig',cfg, ...
'CodegenArguments','-d profilingdir','Threshold',0.001)

The code execution profiling report opens. This report provides metrics based on data collected from
a SIL execution. Execution times are calculated from data recorded by instrumentation probes added
to the SIL test harness or inside the code generated for each component. See “View Execution Times”
(Embedded Coder) for more information.

3 Troubleshooting

3-24

https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters
https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters

See Also
codegen | coder.EmbeddedCodeConfig | gpucoder.profile

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 3-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 3-11

 Analyze Execution Profiles of the Generated Code

3-25

• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 3-15

3 Troubleshooting

3-26

Analysis with NVIDIA Profiler

In this section...
“Not Enough Parallelism” on page 3-27
“Too Many Local per-Thread Registers” on page 3-27

Not Enough Parallelism
Condition

If the kernel is doing little work, then the overhead of memcpy and kernel launches can offset any
performance gains. Consider working on a larger sample set (thus increasing the loop size). To detect
this condition, look at the nvvpreport.

Action

Do more work in the loop or increase sample set size

Too Many Local per-Thread Registers
Condition

If there are too many local/temp variables used in the loop body, then it causes high register pressure
in the per-thread register file. You can detect this condition by running in GPU safe-build mode. Or,
nvvp reports this fact.

Action

Consider using different block sizes in coder.gpu.kernel pragma.

See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation Reports” on page 3-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 3-11
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 3-15
• “Kernel Analysis” on page 3-18
• “Memory Bottleneck Analysis” on page 3-22
• “Analyze Execution Profiles of the Generated Code” on page 3-24

 Analysis with NVIDIA Profiler

3-27

GPU Coder Limitations

General Limitations
• Spaces in file and path names cause build errors in Linux®. GPU Coder uses GNU make tools that

have known limitations when file names contain spaces. It is generally a good practice to avoid
spaces in file, project, and path names.

• GPU Coder disables integrity and array bounds/dimension checks that are part of MATLAB Coder.
• When using coder.inline('never') option during code generation, GPU Coder creates kernel

for only the entry-point function containing the coder.gpu.kernelfun pragma and does not
create kernels automatically for any sub-functions within the entry-point function. It is therefore
recommended not to use the coder.inline('never') option.

• Generating kernels for structures with variable-size arrays is not supported.
• The CUDA compute capability that you select must match the compute capability of your

hardware.
• When using coder.ceval with GPU pointers, the Check for Issues option for CPU is not

supported.
• GPU Coder does not support code generation for Simulink® blocks. You cannot use the NVIDIA

Jetson and NVIDIA Drive boards from the Hardware board option in the Hardware
Implementation pane and target NVIDIA GPUs.

Function Limitations
• You can generate CUDA code for only a subset of MATLAB built-in functions and toolbox functions.
• When targeting NVIDIA Tegra devices, GPU Coder does not support the quasi-euclidean

method of bwdist function and image dimensions greater than 3.
• When imfilter is used with a 1xN kernel and N is an even integer, shared memory is not used in

generated code. When imfilter is used with a three-dimensional image, shared memory is not
used in the conv2 implementation.

• GPU Coder has empty code replacement report even if there is a replacement. This issue has been
identified with atan function.

Unsupported CUDA Features
List of CUDA features that are not supported:

• Texture memory
• Asynchronous streams
• Dynamic kernel invocation — calling kernels from within kernels

See Also

More About
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”

3 Troubleshooting

3-28

• “Code Generation Reports” on page 3-5
• “Trace Between Generated CUDA Code and MATLAB Source Code” on page 3-11
• “Generating a GPU Code Metrics Report for Code Generated from MATLAB Code” on page 3-15
• “Kernel Analysis” on page 3-18
• “Memory Bottleneck Analysis” on page 3-22
• “Analyze Execution Profiles of the Generated Code” on page 3-24

 GPU Coder Limitations

3-29

Deep Learning

• “Workflow” on page 4-2
• “Supported Networks and Layers” on page 4-4
• “Generated CNN Class Hierarchy” on page 4-14
• “Load Pretrained Networks for Code Generation” on page 4-15
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-36
• “Data Layout Considerations in Deep Learning” on page 4-40

4

Workflow
In a typical Convolutional Neural Networks (CNN) workflow, you start with constructing a CNN
architecture by using the Deep Learning Toolbox, and train the network in tandem with the Parallel
Computing Toolbox™. Alternatively, you can import a ConvNet already trained on a large dataset,
and transfer the learned features. Transfer learning implies taking a CNN trained for one set of
classification problems and retraining it to classify a different set of classes. Here the last few layers
of the CNN are relearned. Again, Parallel Computing Toolbox is used in the learning phase. You can
also import a trained CNN network from other frameworks like Caffe or MatConvNet into a
SeriesNetwork object.

Once you have obtained the trained network, you can use GPU Coder to generate C++ or CUDA code
and deploy CNN on multiple embedded platforms that use NVIDIA or ARM® GPU processors. The
generated code implements the CNN by using the architecture, the layers, and parameters that you
specify in the input SeriesNetwork or DAGNetwork object.

The code generator takes advantage of NVIDIA CUDA deep neural network library (cuDNN), NVIDIA
TensorRT high performance inference library for NVIDIA GPUs and ARM Compute Library for
computer vision and machine learning for ARM Mali GPUs.

The generated code can be integrated into your project as source code, static or dynamic libraries, or
executables that you can deploy to a variety of NVIDIA and ARM Mali GPU platforms. For performing
deep learning on ARM Mali GPU targets, you generate code on the host development computer. Then,
to build and run the executable program move the generated code to the ARM target platform.

4 Deep Learning

4-2

https://developer.arm.com/technologies/compute-library

See Also
codegen | coder.CodeConfig | coder.CuDNNConfig | coder.DeepLearningConfig |
coder.EmbeddedCodeConfig | coder.getDeepLearningLayers | coder.gpuConfig |
coder.gpuEnvConfig

More About
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)
• “Get Started with Transfer Learning” (Deep Learning Toolbox)
• “Create Simple Deep Learning Network for Classification” (Deep Learning Toolbox)
• “Supported Networks and Layers” on page 4-4
• “Load Pretrained Networks for Code Generation” on page 4-15
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-36

 Workflow

4-3

Supported Networks and Layers

Supported Pretrained Networks
GPU Coder supports code generation for series and directed acyclic graph (DAG) convolutional
neural networks (CNNs or ConvNets). You can generate code for any trained convolutional neural
network whose layers are supported for code generation. See “Supported Layers” on page 4-6. You
can train a convolutional neural network on either a CPU, a GPU, or multiple GPUs by using the Deep
Learning Toolbox or use one of the pretrained networks listed in the table and generate CUDA code.

Network
Name

Description cuDNN TensorRT ARM
Compute
Library for
Mali GPU

AlexNet AlexNet convolutional neural network.
For the pretrained AlexNet model, see
alexnet.

The syntax
alexnet('Weights','none') is not
supported for code generation.

Yes Yes Yes

GoogLeNet GoogLeNet convolutional neural network.
For the pretrained GoogLeNet model, see
googlenet.

The syntax
googlenet('Weights','none') is not
supported for code generation.

Yes Yes Yes

Caffe
Network

Convolutional neural network models
from Caffe. For importing a pretrained
network from Caffe, see
importCaffeNetwork.

Yes Yes Yes

Darknet-19 Darknet-19 convolutional neural network.
For more information, see darknet19.

The syntax
darknet19('Weights','none') is not
supported for code generation.

Yes Yes Yes

Darknet-53 Darknet-53 convolutional neural network.
for more information, see darknet53.

The syntax
darknet53('Weights','none') is not
supported for code generation.

Yes Yes Yes

DeepLab v3+ DeepLab v3+ convolutional neural
network. For more information, see
deeplabv3plusLayers.

Yes Yes No

4 Deep Learning

4-4

Network
Name

Description cuDNN TensorRT ARM
Compute
Library for
Mali GPU

DenseNet-201 DenseNet-201 convolutional neural
network. For the pretrained
DenseNet-201 model, see densenet201.

The syntax
densenet201('Weights','none') is
not supported for code generation.

Yes Yes Yes

Inception-v3 Inception-v3 convolutional neural
network. For the pretrained Inception-v3
model, see inceptionv3.

The syntax
inceptionv3('Weights','none') is
not supported for code generation.

Yes Yes Yes

Inception-
ResNet-v2

Inception-ResNet-v2 convolutional neural
network. For the pretrained Inception-
ResNet-v2 model, see
inceptionresnetv2.

Yes Yes No

Mobilenet-v2 MobileNet-v2 convolutional neural
network. For the pretrained MobileNet-
v2 model, see mobilenetv2.

The syntax
mobilenetv2('Weights','none') is
not supported for code generation.

Yes Yes Yes

NASNet-
Large

NASNet-Large convolutional neural
network. For the pretrained NASNet-
Large model, see nasnetlarge.

Yes Yes No

NASNet-
Mobile

NASNet-Mobile convolutional neural
network. For the pretrained NASNet-
Mobile model, see nasnetmobile.

Yes Yes No

ResNet ResNet-18, ResNet-50, and ResNet-101
convolutional neural networks. For the
pretrained ResNet models, see
resnet50, resnet18, and resnet101.

The syntax
resnetXX('Weights','none') is not
supported for code generation.

Yes Yes Yes

SegNet Multi-class pixelwise segmentation
network. For more information, see
segnetLayers.

Yes Yes No

 Supported Networks and Layers

4-5

Network
Name

Description cuDNN TensorRT ARM
Compute
Library for
Mali GPU

SqueezeNet Small deep neural network. For the
pretrained SqueezeNet models, see
squeezenet.

The syntax
squeezenet('Weights','none') is
not supported for code generation.

Yes Yes Yes

VGG-16 VGG-16 convolutional neural network.
For the pretrained VGG-16 model, see
vgg16.

The syntax vgg16('Weights','none')
is not supported for code generation.

Yes Yes Yes

VGG-19 VGG-19 convolutional neural network.
For the pretrained VGG-19 model, see
vgg19.

The syntax vgg19('Weights','none')
is not supported for code generation.

Yes Yes Yes

Xception Xception convolutional neural network.
For the pretrained Xception model, see
xception.

The syntax
xception('Weights','none') is not
supported for code generation.

Yes Yes Yes

YOLO v2 You only look once version 2
convolutional neural network based
object detector. For more information,
see yolov2Layers

Yes Yes Yes

Supported Layers
The following layers are supported for code generation by GPU Coder for the target deep learning
libraries specified in the table.

Once you install the support package GPU Coder Interface for Deep Learning Libraries, you can use
coder.getDeepLearningLayers to see a list of the layers supported for a specific deep learning
library. For example, coder.getDeepLearningLayers('cudnn') shows the list of layers
supported for code generation by using the NVIDIA cuDNN library.

4 Deep Learning

4-6

Input Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 imageInputLayer
Deep Learning
Toolbox

An image input layer inputs 2-D images to a
network and applies data normalization.

Code generation does not support
'Normalization' specified using a function
handle.

Yes Yes Yes

 sequenceInputLayer
Deep Learning
Toolbox

A sequence input layer inputs sequence data to a
network.

For code generation, only vector input types are
supported. 2-D and 3-D image sequence input is
not supported.

Code generation does not support
'Normalization' specified using a function
handle.

Yes Yes No

Convolution and Fully Connected Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 convolution2dLayer
Deep Learning
Toolbox

A 2-D convolutional layer applies sliding
convolutional filters to the input.

Yes Yes Yes

groupedConvolution2dLayer

Deep Learning
Toolbox

A 2-D grouped convolutional layer separates the
input channels into groups and applies sliding
convolutional filters. Use grouped convolutional
layers for channel-wise separable (also known as
depth-wise separable) convolution.

Code generation for the ARM Mali GPU is not
supported for a 2-D grouped convolution layer
that has the NumGroups property set as
'channel-wise' or a value greater than two.

Yes Yes Yes

 transposedConv2dLayer
Deep Learning
Toolbox

A transposed 2-D convolution layer upsamples
feature maps.

Yes Yes Yes

 fullyConnectedLayer
Deep Learning
Toolbox

A fully connected layer multiplies the input by a
weight matrix and then adds a bias vector.

Yes Yes No

 Supported Networks and Layers

4-7

Sequence Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 sequenceInputLayer
Deep Learning
Toolbox

A sequence input layer inputs sequence data to a
network.

For code generation, only vector input types are
supported. 2-D and 3-D image sequence input is
not supported.

Code generation does not support
'Normalization' specified using a function
handle.

Yes Yes No

 lstmLayer
Deep Learning
Toolbox

An LSTM layer learns long-term dependencies
between time steps in time series and sequence
data.

For code generation, the
StateActivationFunction property must be
set to 'tanh'.

For code generation, the
GateActivationFunction property must be
set to 'sigmoid'.

Yes Yes No

 bilstmLayer
Deep Learning
Toolbox

A bidirectional LSTM (BiLSTM) layer learns
bidirectional long-term dependencies between
time steps of time series or sequence data. These
dependencies can be useful when you want the
network to learn from the complete time series at
each time step.

For code generation, the
StateActivationFunction property must be
set to 'tanh'.

For code generation, the
GateActivationFunction property must be
set to 'sigmoid'.

Yes Yes No

 flattenLayer
Deep Learning
Toolbox

A flatten layer collapses the spatial dimensions of
the input into the channel dimension.

Yes No No

 wordEmbeddingLayer
Text Analytics
Toolbox™

A word embedding layer maps word indices to
vectors.

Yes Yes No

4 Deep Learning

4-8

Activation Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 reluLayer
Deep Learning
Toolbox

A ReLU layer performs a threshold operation to
each element of the input, where any value less
than zero is set to zero.

Yes Yes Yes

 leakyReluLayer
Deep Learning
Toolbox

A leaky ReLU layer performs a threshold
operation, where any input value less than zero is
multiplied by a fixed scalar.

Yes Yes Yes

 clippedReluLayer
Deep Learning
Toolbox

A clipped ReLU layer performs a threshold
operation, where any input value less than zero is
set to zero and any value above the clipping
ceiling is set to that clipping ceiling.

Yes Yes Yes

 eluLayer
Deep Learning
Toolbox

An ELU activation layer performs the identity
operation on positive inputs and an exponential
nonlinearity on negative inputs.

Yes Yes No

 tanhLayer
Deep Learning
Toolbox

A hyperbolic tangent (tanh) activation layer
applies the tanh function on the layer inputs.

Yes Yes Yes

Normalization, Dropout, and Cropping Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 batchNormalizationLayer
Deep Learning
Toolbox

A batch normalization layer normalizes each
input channel across a mini-batch.

Yes Yes Yes

crossChannelNormalizationLay
er

Deep Learning
Toolbox

A channel-wise local response (cross-channel)
normalization layer carries out channel-wise
normalization.

Yes Yes Yes

 dropoutLayer
Deep Learning
Toolbox

A dropout layer randomly sets input elements to
zero with a given probability.

Yes Yes Yes

 crop2dLayer
Deep Learning
Toolbox

A 2-D crop layer applies 2-D cropping to the
input.

Yes Yes Yes

Pooling and Unpooling Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 averagePooling2dLayer
Deep Learning
Toolbox

An average pooling layer performs down-
sampling by dividing the input into rectangular
pooling regions and computing the average
values of each region.

Yes Yes Yes

 Supported Networks and Layers

4-9

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

globalAveragePooling2dLayer

Deep Learning
Toolbox

A global average pooling layer performs down-
sampling by computing the mean of the height
and width dimensions of the input.

Yes Yes Yes

 maxPooling2dLayer
Deep Learning
Toolbox

A max pooling layer performs down-sampling by
dividing the input into rectangular pooling
regions, and computing the maximum of each
region.

Yes Yes Yes

 globalMaxPooling2dLayer
Deep Learning
Toolbox

A global max pooling layer performs down-
sampling by computing the maximum of the
height and width dimensions of the input.

Yes Yes Yes

 maxUnpooling2dLayer
Deep Learning
Toolbox

A max unpooling layer unpools the output of a
max pooling layer.

Yes Yes No

Combination Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 additionLayer
Deep Learning
Toolbox

An addition layer adds inputs from multiple
neural network layers element-wise.

Yes Yes Yes

 depthConcatenationLayer
Deep Learning
Toolbox

A depth concatenation layer takes inputs that
have the same height and width and
concatenates them along the third dimension
(the channel dimension).

Yes Yes Yes

 concatenationLayer
Deep Learning
Toolbox

A concatenation layer takes inputs and
concatenates them along a specified dimension.

Yes Yes No

Object Detection Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 anchorBoxLayer
Computer Vision
Toolbox

An anchor box layer stores anchor boxes for a
feature map used in object detection networks.

Yes Yes Yes

 ssdMergeLayer
Computer Vision
Toolbox

An SSD merge layer merges the outputs of feature
maps for subsequent regression and classification
loss computation.

Yes Yes No

 YOLOv2OutputLayer
Computer Vision
Toolbox

Create output layer for YOLO v2 object detection
network.

Yes Yes Yes

 YOLOv2ReorgLayer
Computer Vision
Toolbox

Create reorganization layer for YOLO v2 object
detection network.

Yes Yes Yes

4 Deep Learning

4-10

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 YOLOv2TransformLayer
Computer Vision
Toolbox

Create transform layer for YOLO v2 object
detection network.

Yes Yes Yes

Output Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

 softmaxLayer
Deep Learning
Toolbox

A softmax layer applies a softmax function to the
input.

Yes Yes Yes

 classificationLayer
Deep Learning
Toolbox

A classification layer computes the cross entropy
loss for multi-class classification problems with
mutually exclusive classes.

Yes Yes Yes

 regressionLayer
Deep Learning
Toolbox

A regression layer computes the half-mean-
squared-error loss for regression problems.

Yes Yes Yes

 pixelClassificationLayer
Computer Vision
Toolbox

A pixel classification layer provides a categorical
label for each image pixel or voxel.

Yes Yes Yes

dicePixelClassificationLayer

Computer Vision
Toolbox

A Dice pixel classification layer provides a
categorical label for each image pixel or voxel
using generalized Dice loss.

Yes Yes Yes

 Output Layer
Deep Learning
Toolbox

All output layers including custom classification or
regression output layers created by using
nnet.layer.ClassificationLayer or
nnet.layer.RegressionLayer.

For an example showing how to define a custom
classification output layer and specify a loss
function, see “Define Custom Classification
Output Layer” (Deep Learning Toolbox).

For an example showing how to define a custom
regression output layer and specify a loss
function, see “Define Custom Regression Output
Layer” (Deep Learning Toolbox).

Yes Yes Yes

Keras and ONNX Layers

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

nnet.keras.layer.FlattenCSty
leLayer

Deep Learning
Toolbox

Flatten activations into 1-D assuming C-style (row-
major) order.

Yes Yes Yes

nnet.keras.layer.GlobalAvera
gePooling2dLayer

Deep Learning
Toolbox

Global average pooling layer for spatial data. Yes Yes Yes

 Supported Networks and Layers

4-11

Layer Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

nnet.keras.layer.SigmoidLaye
r

Deep Learning
Toolbox

Sigmoid activation layer. Yes Yes Yes

nnet.keras.layer.TanhLayer Deep Learning
Toolbox

Hyperbolic tangent activation layer. Yes Yes Yes

nnet.keras.layer.ZeroPadding
2dLayer

Deep Learning
Toolbox

Zero padding layer for 2-D input. Yes Yes Yes

nnet.onnx.layer.ElementwiseA
ffineLayer

Deep Learning
Toolbox

Layer that performs element-wise scaling of the
input followed by an addition.

Yes Yes Yes

nnet.onnx.layer.FlattenLayer Deep Learning
Toolbox

Flattens the spatial dimensions of the input tensor
to the channel dimensions.

Yes Yes Yes

nnet.onnx.layer.IdentityLaye
r

Deep Learning
Toolbox

Layer that implements ONNX identity operator. Yes Yes Yes

Supported Classes
The following classes are supported for code generation by GPU Coder for the target deep learning
libraries specified in the table.

Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

yolov2ObjectDetector Computer Vision
Toolbox

Detect objects using YOLO v2 object detector

• Only the detect method of the
yolov2ObjectDetector is supported for
code generation.

• The roi argument to the detect method must
be a codegen constant (coder.const()) and
a 1x4 vector.

• Only the Threshold, SelectStrongest,
MinSize, MaxSize, and MiniBatchSize
Name-Value pairs are supported.

• The height, width, channel, and batch size of
the input image must be fixed size.

• The minimum batch size value passed to detect
method must be fixed size.

• The labels output is returned as a cell array of
character vectors, such as {'car','bus'}.

Yes Yes Yes

4 Deep Learning

4-12

Name Product Description cuDNN TensorRT ARM Compute
Library for Mali
GPU

ssdObjectDetector Computer Vision
Toolbox

Object to detect objects using the SSD-based
detector.

• Only the detect method of the
ssdObjectDetector is supported for code
generation.

• The roi argument to the detect method must
be a codegen constant (coder.const()) and
a 1x4 vector.

• Only the Threshold, SelectStrongest,
MinSize, MaxSize, and MiniBatchSize
Name-Value pairs are supported. All Name-
Value pairs must be compile-time constants.

• The channel and batch size of the input image
must be fixed size.

• The labels output is returned as a categorical
array.

• In the generated code, the input is rescaled to
the size of the input layer of the network. But
the bounding box that the detect method
returns is in reference to the original input
size.

• The bounding boxes might not numerically
match the simulation results.

Yes Yes No

See Also
codegen | coder.CodeConfig | coder.CuDNNConfig | coder.DeepLearningConfig |
coder.EmbeddedCodeConfig | coder.getDeepLearningLayers | coder.gpuConfig |
coder.gpuEnvConfig

More About
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)
• “Get Started with Transfer Learning” (Deep Learning Toolbox)
• “Create Simple Deep Learning Network for Classification” (Deep Learning Toolbox)
• “Load Pretrained Networks for Code Generation” on page 4-15
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-36

 Supported Networks and Layers

4-13

Generated CNN Class Hierarchy
The generated CNN code has the following class hierarchy. The Layer class and the generated
Network class have three important methods:

1 setup(), which allocates memory and system resources for each layer.
2 predict(), which performs forward inference in the execution loop.
3 cleanup(), which releases all memory and system resources.

See Also

More About
• “Supported Networks and Layers” on page 4-4
• “Load Pretrained Networks for Code Generation” on page 4-15
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-36

4 Deep Learning

4-14

Load Pretrained Networks for Code Generation
You can generate code for a pretrained convolutional neural network (CNN). To provide the network
to the code generator, load a SeriesNetwork, DAGNetwork, yolov2ObjectDetector, or
ssdObjectDetector object from the trained network.

Load a Network by Using coder.loadDeepLearningNetwork
You can load a network object from any network that is supported for code generation by using
coder.loadDeepLearningNetwork. You can specify the network from a MAT-file. The MAT-file
must contain only the network to be loaded.

For example, suppose that you create a trained network object called myNet by using the
trainNetwork function. Then, you save the workspace by entering save. This creates a file called
matlab.mat that contains the network object. To load the network object myNet, enter:

net = coder.loadDeepLearningNetwork('matlab.mat');

You can also specify the network by providing the name of a function that returns a pretrained
SeriesNetwork, DAGNetwork, yolov2ObjectDetector, or ssdObjectDetector object, such as:

• alexnet
• darknet19
• darknet53
• densenet201
• googlenet
• inceptionv3
• inceptionresnetv2
• mobilenetv2
• nasnetlarge
• nasnetmobile
• resnet18
• resnet50
• resnet101
• squeezenet
• vgg16
• vgg19
• xception

For example, load a network object by entering:

net = coder.loadDeepLearningNetwork('googlenet');

The Deep Learning Toolbox functions in the previous list require that you install a support package
for the function. See “Pretrained Deep Neural Networks” (Deep Learning Toolbox).

 Load Pretrained Networks for Code Generation

4-15

Specify a Network Object for Code Generation
If you generate code by using codegen or the app, load the network object inside of your entry-point
function by using coder.loadDeepLearningNetwork. For example:
function out = myNet_predict(in) %#codegen

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('matlab.mat');
end
out = predict(mynet,in);

For pretrained networks that are available as support package functions such as alexnet,
inceptionv3, googlenet, and resnet, you can directly specify the support package function, for
example, by writing mynet = googlenet.

Next, generate code for the entry-point function. For example:

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -args {ones(224,224,3,'single')} -config cfg myNet_predict

If you generate code by using cnncodegen, load the network object in the MATLAB workspace.
Then, pass the object to cnncodegen. For example:

net = squeezenet;
cnncodegen(net,'targetlib','cudnn');

See Also
DAGNetwork | SeriesNetwork | cnncodegen | codegen | coder.loadDeepLearningNetwork |
ssdObjectDetector | trainNetwork | yolov2ObjectDetector

More About
• “Supported Networks and Layers” on page 4-4
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-36

4 Deep Learning

4-16

Code Generation for Deep Learning Networks by Using cuDNN
With GPU Coder, you can generate optimized code for prediction of a variety of trained deep learning
networks from Deep Learning Toolbox. The generated code implements the deep convolutional neural
network (CNN) by using the architecture, the layers, and parameters that you specify in the input
SeriesNetwork or DAGNetwork object. The code generator takes advantage of NVIDIA CUDA deep
neural network library (cuDNN) for NVIDIA GPUs. cuDNN is a GPU-accelerated library of primitives
for deep neural networks. The generated code can be integrated into your project as source code,
static or dynamic libraries, or executables that you can deploy to a variety of NVIDIA GPU platforms.

Generate code for convolutional networks by using one of the methods:

• The standard codegen function that generates CUDA code from a MATLAB entry-point function.
• The cnncodegen command that generates CUDA code and builds a static library for the specified

network object.
• The GPU Coder app that generates CUDA code from a MATLAB entry-point function.

Generate Code and Classify Images by Using GoogLeNet
In this example, you use GPU Coder to generate CUDA code for the pretrained googlenet deep
convolutional neural network and classify an image. GoogLeNet has been trained on over a million
images and can classify images into 1000 object categories (such as keyboard, coffee mug, pencil,
and animals). The network has learned rich feature representations for a wide range of images. The
network takes an image as input, and then outputs a label for the object in the image together with
the probabilities for each of the object categories. This example show you how to generate code for
the pretrained network by using the codegen command, the cnncodegen command, and the GPU
Coder app.

Requirements
1 Deep Learning Toolbox.
2 Deep Learning Toolbox Model for GoogLeNet Network support package.
3 GPU Coder Interface for Deep Learning Libraries support package. To install the support

packages, select the support package from the MATLAB Add-Ons menu.
4 CUDA toolkit and cuDNN libraries. For information on the supported versions of the compilers

and libraries, see “Installing Prerequisite Products”.
5 Environment variables for the compilers and libraries. For more information, see “Environment

Variables”.

Load Pretrained Network
1 Load the pretrained GoogLeNet network. You can choose to load a different pretrained network

for image classification. If you do not have the required support packages installed, the software
provides a download link.

net = googlenet;
2 The object net contains the DAGNetwork object. Use the analyzeNetwork function to display

an interactive visualization of the network architecture, to detect errors and issues in the
network, and to display detailed information about the network layers. The layer information

 Code Generation for Deep Learning Networks by Using cuDNN

4-17

includes the sizes of layer activations and learnable parameters, the total number of learnable
parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(net);

3 The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the size of the imageInputLayer is 224-by-224-by-3. The Classes property of the
output classificationLayer contains the names of the classes learned by the network. View
10 random class names out of the total of 1000.

classNames = net.Layers(end).Classes;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

 'speedboat'
 'window screen'
 'isopod'
 'wooden spoon'
 'lipstick'
 'drake'
 'hyena'
 'dumbbell'
 'strawberry'
 'custard apple'

For more information, see “List of Deep Learning Layers” (Deep Learning Toolbox).

Create an Entry-Point Function
1 Write an entry-point function in MATLAB that:

4 Deep Learning

4-18

a Uses the coder.loadDeepLearningNetwork function to load a deep learning model and
to construct and set up a CNN class. For more information, see “Load Pretrained Networks
for Code Generation” on page 4-15.

b Calls predict to predict the responses.
2 For example:

function out = googlenet_predict(in) %#codegen

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('googlenet');
end

% pass in input
out = predict(mynet,in);

A persistent object mynet loads the DAGNetwork object. At the first call to the entry-point
function, the persistent object is constructed and set up. On subsequent calls to the function, the
same object is reused to call predict on inputs, avoiding reconstructing and reloading the
network object.

3 You can also use the activations method to network activations for a specific layer. For
example, the following line of code returns the network activations for the layer specified in
layerIdx.

out = activations(mynet,in,layerIdx,'OutputAs','Channels');
4 You can also use the classify method to predict class labels for the image data in in using the

trained network, mynet.

[out,scores] = classify(mynet,in);

For LSTM networks, you can also use the predictAndUpdateState and resetState methods.
For usage notes and limitations of these method, see the corresponding entry in the “Supported
Functions” on page 1-6 table.

Code Generation by Using codegen
1 To configure build settings such as output file name, location, and type, you create coder

configuration objects. To create the objects, use the coder.gpuConfig function. For example,
when generating CUDA MEX using the codegen command, use cfg =
coder.gpuConfig('mex');

Other available options are:

a cfg = coder.gpuConfig('lib');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ static library.

b cfg = coder.gpuConfig('dll');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ dynamic library.

c cfg = coder.gpuConfig('exe');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ executable.

2 To specify code generation parameters for cuDNN, set the DeepLearningConfig property to a
coder.CuDNNConfig object that you create by using coder.DeepLearningConfig.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

 Code Generation for Deep Learning Networks by Using cuDNN

4-19

cfg.DeepLearningConfig.AutoTuning = true;
cfg.DeepLearningConfig.DataType = 'fp32';

Specify the precision of the tensor data type input to the network by using the DataType
property. When performing inference in 32-bit floats, use 'fp32'. For 8-bit integer, use 'int8'.
Default value is 'fp32'. INT8 precision requires a CUDA GPU with minimum compute capability
of 6.1. Use the ComputeCapability property of the GpuConfig object to set the appropriate
compute capability value.

Note Code generation for INT8 data type does not support multiple deep learning networks in
the entry-point function.

3 Run the codegen command. The codegen command generates CUDA code from the
googlenet_predict.m MATLAB entry-point function.

codegen -config cfg googlenet_predict -args {ones(224,224,3)} -report

a The -report option instructs codegen to generate a code generation report that you can
use to debug your MATLAB code.

b The -args option instructs codegen to compile the file googlenet_predict.m by using
the class, size, and complexity specified for the input in. The value (224,224,3)
corresponds to input layer size of the GoogLeNet network.

c The -config option instructs codegen to use the specified configuration object for code
generation.

Note You can specify half-precision inputs for code generation. However, the code generator
type casts the inputs to single-precision. The Deep Learning Toolbox uses single-precision,
floating-point arithmetic for all computations in MATLAB.

The code generator uses column-major layout by default. To use row-major layout pass the -
rowmajor option to the codegen command. Alternatively, configure your code for row-major
layout by modifying the cfg.RowMajor parameter in the code generation configuration object.

4 When code generation is successful, you can view the resulting code generation report by
clicking View Report in the MATLAB Command Window. The report is displayed in the Report
Viewer window. If the code generator detects errors or warnings during code generation, the
report describes the issues and provides links to the problematic MATLAB code. See “Code
Generation Reports” (MATLAB Coder).

Code generation successful: View report

Generated Code

The DAG network is generated as a C++ class containing an array of 78 layer classes. The code
generator reduces the number of layers by using layer fusion optimization of convolutional and ReLU
layers. A snippet of the class declaration from googlenet_predict_types.h file is shown.

googlenet_predict_types.h File

class b_googlenet_0
{
 public:
 void presetup();
 void allocate();

4 Deep Learning

4-20

 void postsetup();
 b_googlenet_0();
 void setup();
 void deallocate();
 void predict();
 void cleanup();
 real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
 ~b_googlenet_0();
 int32_T batchSize;
 int32_T numLayers;
 real32_T *inputData;
 real32_T *outputData;
 real32_T *getInputDataPointer();
 real32_T *getOutputDataPointer();
 MWCNNLayer *layers[78];
 private:
 MWTargetNetworkImpl *targetImpl;
};

• The setup() method of the class sets up handles and allocates memory for each layer of the
network object.

• The predict() method invokes prediction for each of the 78 layers in the network.
• The DeepLearningNetwork.cu file contains the definitions of the object functions for the

b_googlenet_0 class.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_googlenet_conv*_w and cnn_googlenet_conv*_b
correspond to weights and bias parameters for the FusedConvReLU layers in the network. The code
generator places these binary files in the codegen folder.

Note On Windows® systems, some antivirus software such as Bit Defender can incorrectly identify
some weight files as infected and delete them. These cases are false positives and the files can be
marked as safe in your antivirus program.

In the generated code file googlenet_predict.cu, the entry-point function
googlenet_predict() constructs a static object of b_googlenet_0 class type and invokes setup and
predict on this network object.

googlenet_predict.cu File
/* Include files */
#include "googlenet_predict.h"
#include "DeepLearningNetwork.h"
#include "predict.h"
#include "rt_nonfinite.h"

/* Variable Definitions */
static b_googlenet_0 mynet;
static boolean_T mynet_not_empty;

/* Function Definitions */
void googlenet_predict(const real_T in[150528], real32_T out[1000])
{
 if (!mynet_not_empty) {
 DeepLearningNetwork_setup(&mynet);
 mynet_not_empty = true;
 }

 DeepLearningNetwork_predict(&mynet, in, out);
}

 Code Generation for Deep Learning Networks by Using cuDNN

4-21

void googlenet_predict_init()
{
 mynet_not_empty = false;
}

Generate Code by Using the App
To specify the entry-point function and specifying input types, complete the procedure in the app. See
“Code Generation by Using the GPU Coder App”.

In the Generate Code step:

1 Set the Build type to MEX.
2 Click More Settings. In the Deep Learning pane, set Target library to cuDNN.

3 Close the settings window. To generate CUDA code, click Generate.

Code Generation by Using cnncodegen
To generate code with the cuDNN library, you can use the targetlib option of the cnncodegen
command. The cnncodegen command generates CUDA code and builds a static library for the given
SeriesNetwork or DAGNetwork object.

4 Deep Learning

4-22

1 Load the pretrained network. For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

2 Call cnncodegen with 'targetlib' specified as 'cudnn'. For example:

net = googlenet;
cnncodegen(net,'targetlib','cudnn');

The cnncodegen command generates code, a makefile, cnnbuild_rtw.mk, and builds the
library file cnnbuild. The command places all the generated files in the codegen folder.

Generated Code

The DAG network is generated as a C++ class (CnnMain) containing an array of 78 layer classes. The
code generator reduces the number of layers by using layer fusion optimization of convolutional and
ReLU layers. A snippet of the class declaration from cnn_exec.hpp file is shown.

cnn_exec.hpp File

class CnnMain
{
 public:
 int32_T batchSize;
 int32_T numLayers;
 real32_T *inputData;
 real32_T *outputData;
 MWCNNLayer *layers[78];
 private:
 MWTargetNetworkImpl *targetImpl;
 public:
 void presetup();
 void allocate();
 void postsetup();
 CnnMain();
 void setup();
 void deallocate();
 void predict();
 void cleanup();
 real32_T *getInputDataPointer();
 real32_T *getOutputDataPointer();
 real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
 ~CnnMain();
};

• The setup() method of the class sets up handles and allocates memory for each layer of the
network object.

• The predict() method invokes prediction for each of the 78 layers in the network.
• The cnn_exec.cpp file contains the definitions of the object functions for the CnnMain class.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_CnnMain_conv*_w and cnn_CnnMain_conv*_b correspond to
weights and bias parameters for the FusedConvReLU layers in the network. The code generator
places these binary files in the codegen folder. The code generator builds the library file cnnbuild
and places all the generated files in the codegen folder.

 Code Generation for Deep Learning Networks by Using cuDNN

4-23

Generated Makefile
For 'lib', 'dll', and 'exe' targets, the code generator creates the *_rtw.mk make file in the
codegen folder. In this make file, the location of the generated code is specified by using the
START_DIR variable found in the MACROS section. By default, this variable points to the path of the
current working folder where the code is generated. If you plan to move the generated files and use
the makefile to build, replace the generated value of START_DIR with the appropriate path location.

Run the Generated MEX
1 The image that you want to classify must have the same size as the input size of the network.

Read the image that you want to classify and resize it to the input size of the network. This
resizing slightly changes the aspect ratio of the image.

im = imread("peppers.png");
inputLayerSize = net.Layers(1).InputSize;
im = imresize(I,inputLayerSize(1:2));

2 Call GoogLeNet predict on the input image.

predict_scores = googlenet_predict_mex(im);
3 Display the top five predicted labels and their associated probabilities as a histogram. Because

the network classifies images into so many object categories, and many categories are similar, it
is common to consider the top-five accuracy when evaluating networks. The network classifies
the image as a bell pepper with a high probability.

[scores,indx] = sort(predict_scores, 'descend');
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top 5 predictions using GoogLeNet')

4 Deep Learning

4-24

See Also
cnncodegen | codegen | coder.CuDNNConfig | coder.loadDeepLearningNetwork

More About
• “Supported Networks and Layers” on page 4-4
• “Load Pretrained Networks for Code Generation” on page 4-15
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Code Generation for Deep Learning Networks”
• “Code Generation for Object Detection by Using YOLO v2”
• “Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform”
• “Generated CNN Class Hierarchy” on page 4-14

 Code Generation for Deep Learning Networks by Using cuDNN

4-25

Code Generation for Deep Learning Networks by Using
TensorRT

With GPU Coder, you can generate optimized code for prediction of a variety of trained deep learning
networks from Deep Learning Toolbox. The generated code implements the deep convolutional neural
network (CNN) by using the architecture, the layers, and parameters that you specify in the input
SeriesNetwork or DAGNetwork object. You can configure the code generator to take advantage of
the NVIDIA TensorRT high performance inference library for NVIDIA GPUs. TensorRT provides
improved latency, throughput, and memory efficiency by combining network layers and optimizing
kernel selection. You can also configure the code generator to take advantage TensorRT's precision
modes (FP32, FP16, or INT8) to further improve performance and reduce memory requirements. The
generated code can be integrated into your project as source code, static or dynamic libraries, or
executables that you can deploy to a variety of NVIDIA GPU platforms.

Note The TensorRT work flow is not supported on MATLAB online.

Generate code for convolutional networks by using one of the methods:

• The standard codegen function that generates CUDA code from a MATLAB entry-point function.
• The cnncodegen command that generates CUDA code and builds a static library for the specified

network object.
• The GPU Coder app that generates CUDA code from a MATLAB entry-point function.

Generate Code and Classify Images by Using GoogLeNet
In this example, you use GPU Coder to generate CUDA code for the pretrained googlenet deep
convolutional neural network and classify an image. GoogLeNet has been trained on over a million
images and can classify images into 1000 object categories (such as keyboard, coffee mug, pencil,
and animals). The network has learned rich feature representations for a wide range of images. The
network takes an image as input, and then outputs a label for the object in the image with the
probabilities for each of the object categories. This example show you how to generate code for the
pretrained network by using the codegen command, the cnncodegen command, and the GPU Coder
app.

This example uses 32-bit floats (default value) as the precision for the tensor inputs. To learn more
about using 8-bit integer precision for the tensors, see the “Deep Learning Prediction by Using
NVIDIA TensorRT” example.

Requirements
1 Deep Learning Toolbox.
2 Deep Learning Toolbox Model for GoogLeNet Network support package.
3 GPU Coder Interface for Deep Learning Libraries support package. To install the support

packages, select the support package from the MATLAB Add-Ons menu.
4 CUDA toolkit, cuDNN, and TensorRT libraries. For information on the supported versions of the

compilers and libraries, see “Installing Prerequisite Products”.
5 Environment variables for the compilers and libraries. For more information, see “Environment

Variables”.

4 Deep Learning

4-26

Load Pretrained Network
1 Load the pretrained GoogLeNet network. You can choose to load a different pretrained network

for image classification. If you do not have the required support packages installed, the software
provides a download link.

net = googlenet;
2 The object net contains the DAGNetwork object. Use the analyzeNetwork function to display

an interactive visualization of the network architecture, to detect errors and issues in the
network, and to display detailed information about the network layers. The layer information
includes the sizes of layer activations and learnable parameters, the total number of learnable
parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(net);

3 The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the size of the imageInputLayer is 224-by-224-by-3. The Classes property of the
output classificationLayer contains the names of the classes learned by the network. View
10 random class names out of the total of 1000.

classNames = net.Layers(end).Classes;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

 'speedboat'
 'window screen'
 'isopod'
 'wooden spoon'
 'lipstick'
 'drake'

 Code Generation for Deep Learning Networks by Using TensorRT

4-27

 'hyena'
 'dumbbell'
 'strawberry'
 'custard apple'

For more information, see “List of Deep Learning Layers” (Deep Learning Toolbox).

Create an Entry-Point Function
1 Write an entry-point function in MATLAB that:

a Uses the coder.loadDeepLearningNetwork function to load a deep learning model and
to construct and set up a CNN class. For more information, see “Load Pretrained Networks
for Code Generation” on page 4-15.

b Calls predict to predict the responses.
2 For example:

function out = googlenet_predict(in) %#codegen

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('googlenet');
end

% pass in input
out = predict(mynet,in);

A persistent object mynet loads the DAGNetwork object. At the first call to the entry-point
function, the persistent object is constructed and set up. On subsequent calls to the function, the
same object is reused to call predict on inputs, avoiding reconstructing and reloading the
network object.

3 You can also use the activations method to network activations for a specific layer. For
example, the following line of code returns the network activations for the layer specified in
layerIdx.

out = activations(mynet,in,layerIdx,'OutputAs','Channels');
4 You can also use the classify method to predict class labels for the image data in in using the

trained network, mynet.

[out,scores] = classify(mynet,in);

For LSTM networks, you can also use the predictAndUpdateState and resetState methods.
For usage notes and limitations of these method, see the corresponding entry in the “Supported
Functions” on page 1-6 table.

Code Generation by Using codegen
1 To configure build settings such as output file name, location, and type, you create coder

configuration objects. To create the objects, use the coder.gpuConfig function. For example,
when generating CUDA MEX by using the codegen command, use cfg =
coder.gpuConfig('mex');

Other available options are:

a cfg = coder.gpuConfig('lib');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ static library.

4 Deep Learning

4-28

b cfg = coder.gpuConfig('dll');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ dynamic library.

c cfg = coder.gpuConfig('exe');, to create a code generation configuration object for
use with codegen when generating a CUDA C/C++ executable.

2 To specify code generation parameters for TensorRT, set the DeepLearningConfig property to
a coder.TensorRTConfig object that you create by using coder.DeepLearningConfig.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
cfg.DeepLearningConfig.DataType = 'fp32';

Specify the precision of the tensor data type input to the network or the tensor output of a layer
by using the DataType property. When performing inference in 32-bit floats, use 'fp32'. For
half-precision, use 'fp16'. For 8-bit integer, use 'int8'. Default value is 'fp32'. INT8
precision requires a CUDA GPU with minimum compute capability of 6.1. FP16 precision
requires a CUDA GPU with minimum compute capability of 7.0. Use the ComputeCapability
property of the GpuConfig object to set the appropriate compute capability value.

Note Code generation for INT8 data type does not support multiple deep learning networks in
the entry-point function.

See the “Deep Learning Prediction by Using NVIDIA TensorRT” example for 8-bit integer
prediction for a logo classification network by using TensorRT.

3 Run the codegen command. The codegen command generates CUDA code from the
googlenet_predict.m MATLAB entry-point function.

codegen -config cfg googlenet_predict -args {ones(224,224,3)} -report

a The -report option instructs codegen to generate a code generation report that you can
use to debug your MATLAB code.

b The -args option instructs codegen to compile the file googlenet_predict.m by using
the class, size, and complexity specified for the input in. The value (224,224,3)
corresponds to the input layer size of the GoogLeNet network.

c The -config option instructs codegen to use the specified configuration object for code
generation.

Note You can specify half-precision inputs for code generation. However, the code generator
type casts the inputs to single-precision. The Deep Learning Toolbox uses single-precision,
floating-point arithmetic for all computations in MATLAB. During code generation, you can
enable inference with half-precision (16-bit floating-point) inputs by specifying the DataType
property of coder.TensorRTConfig as 'fp16'.

The code generator uses column-major layout by default. To use row-major layout pass the -
rowmajor option to the codegen command. Alternatively, configure your code for row-major
layout by modifying the cfg.RowMajor parameter in the code generation configuration object.

4 When code generation is successful, you can view the resulting code generation report by
clicking View Report in the MATLAB Command Window. The report is displayed in the Report
Viewer window. If the code generator detects errors or warnings during code generation, the

 Code Generation for Deep Learning Networks by Using TensorRT

4-29

report describes the issues and provides links to the problematic MATLAB code. See “Code
Generation Reports” (MATLAB Coder).

Code generation successful: View report

Generated Code

The DAG network is generated as a C++ class containing an array of 144 layer classes. A snippet of
the class declaration from googlenet_predict_types.h file is shown.

googlenet_predict_types.h File
class b_googlenet_0
{
 public:
 void presetup();
 void allocate();
 void postsetup();
 b_googlenet_0();
 void setup();
 void deallocate();
 void predict();
 void cleanup();
 real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
 ~b_googlenet_0();
 int32_T batchSize;
 int32_T numLayers;
 real32_T *inputData;
 real32_T *outputData;
 real32_T *getInputDataPointer();
 real32_T *getOutputDataPointer();
 MWCNNLayer *layers[144];
 private:
 MWTargetNetworkImpl *targetImpl;
};

• The setup() method of the class sets up handles and allocates memory for each layer of the
network object.

• The predict() method invokes prediction for each of the 144 layers in the network.
• The DeepLearningNetwork.cu file contains the definitions of the object functions for the

b_googlenet_0 class.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_googlenet_conv*_w and cnn_googlenet_conv*_b
correspond to weights and bias parameters for the convolutional layers in the network. The code
generator places these binary files in the codegen folder.

Note On Windows systems, some antivirus software such as Bit Defender can incorrectly identify
some weight files as infected and delete them. These cases are false positives and the files can be
marked as safe in your antivirus program.

In the generated code file googlenet_predict.cu, the entry-point function
googlenet_predict() constructs a static object of b_googlenet_0 class type and invokes setup and
predict on this network object.

4 Deep Learning

4-30

googlenet_predict.cu File
/* Include files */
#include "googlenet_predict.h"
#include "DeepLearningNetwork.h"
#include "predict.h"
#include "rt_nonfinite.h"

/* Variable Definitions */
static b_googlenet_0 mynet;
static boolean_T mynet_not_empty;

/* Function Definitions */
void googlenet_predict(const real_T in[150528], real32_T out[1000])
{
 if (!mynet_not_empty) {
 DeepLearningNetwork_setup(&mynet);
 mynet_not_empty = true;
 }

 DeepLearningNetwork_predict(&mynet, in, out);
}

void googlenet_predict_init()
{
 mynet_not_empty = false;
}

Generate Code by Using the App
To specify the entry-point function and specifying input types, complete the procedure in the app. See
“Code Generation by Using the GPU Coder App”.

In the Generate Code step:

1 Set the Build type to MEX.
2 Click More Settings. In the Deep Learning pane, set Target library to TensorRT.

 Code Generation for Deep Learning Networks by Using TensorRT

4-31

3 Close the settings window. To generate CUDA code, click Generate.

Code Generation by Using cnncodegen
To generate code with the cuDNN library, use the targetlib option of the cnncodegen command.
The cnncodegen command generates CUDA code and builds a static library for the SeriesNetwork
or DAGNetwork object.

1 Load the pretrained network. For more information, see “Load Pretrained Networks for Code
Generation” on page 4-15.

2 Call cnncodegen with 'targetlib' specified as 'tensorrt'. For example:

net = googlenet;
cnncodegen(net,'targetlib','tensorrt');

The cnncodegen command generates code, a makefile, cnnbuild_rtw.mk, and builds the
library file cnnbuild. It places all the generated files in the codegen folder.

Generated Code

The DAG network is generated as a C++ class (CnnMain) containing an array of 144 layer classes. A
snippet of the class declaration from cnn_exec.hpp file is shown.

4 Deep Learning

4-32

cnn_exec.hpp File
class CnnMain
{
 public:
 int32_T batchSize;
 int32_T numLayers;
 real32_T *inputData;
 real32_T *outputData;
 MWCNNLayer *layers[144];
 private:
 MWTargetNetworkImpl *targetImpl;
 public:
 void presetup();
 void allocate();
 void postsetup();
 CnnMain();
 void setup();
 void deallocate();
 void predict();
 void cleanup();
 real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
 real32_T *getInputDataPointer();
 real32_T *getOutputDataPointer();
 ~CnnMain();
};

• he setup() method of the class sets up handles and allocates memory for each layer of the
network object.

• The predict() method invokes prediction for each of the 144 layers in the network.
• The cnn_exec.cpp file contains the definitions of the object functions for the CnnMain class.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_CnnMain_conv*_w and cnn_CnnMain_conv*_b correspond to
weights and bias parameters for the convolutional layers in the network. The code generator
places these binary files in the codegen folder. The code generator builds the library file cnnbuild
and places all the generated files in the codegen folder.

Generated Makefile
For 'lib', 'dll', and 'exe' targets, the code generator creates the *_rtw.mk make file in the
codegen folder. In this make file, the location of the generated code is specified by using the
START_DIR variable found in the MACROS section. By default, this variable points to the path of the
current working folder where the code is generated. If you plan to move the generated files and use
the makefile to build, replace the generated value of START_DIR with the appropriate path location.

Run the Generated MEX
1 The image that you want to classify must have the same size as the input size of the network.

Read the image that you want to classify and resize it to the input size of the network. This
resizing slightly changes the aspect ratio of the image.

im = imread("peppers.png");
inputLayerSize = net.Layers(1).InputSize;
im = imresize(I,inputLayerSize(1:2));

 Code Generation for Deep Learning Networks by Using TensorRT

4-33

2 Call GoogLeNet predict on the input image.

predict_scores = googlenet_predict_mex(im);
3 Display the top five predicted labels and their associated probabilities as a histogram. Because

the network classifies images into so many object categories, and many categories are similar, it
is common to consider the top-five accuracy when evaluating networks. The network classifies
the image as a bell pepper with a high probability.

[scores,indx] = sort(predict_scores, 'descend');
classNamesTop = classNames(indx(1:5));

h = figure;
h.Position(3) = 2*h.Position(3);
ax1 = subplot(1,2,1);
ax2 = subplot(1,2,2);

image(ax1,im);
barh(ax2,scores(5:-1:1))
xlabel(ax2,'Probability')
yticklabels(ax2,classNamesTop(5:-1:1))
ax2.YAxisLocation = 'right';
sgtitle('Top 5 predictions using GoogLeNet')

See Also
cnncodegen | codegen | coder.TensorRTConfig | coder.loadDeepLearningNetwork

More About
• “Supported Networks and Layers” on page 4-4
• “Load Pretrained Networks for Code Generation” on page 4-15
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Deep Learning Prediction by Using NVIDIA TensorRT”
• “Code Generation for Deep Learning Networks”
• “Code Generation for Object Detection by Using YOLO v2”

4 Deep Learning

4-34

• “Deep Learning Prediction by Using Different Batch Sizes”
• “Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform”

 Code Generation for Deep Learning Networks by Using TensorRT

4-35

Code Generation for Deep Learning Networks Targeting ARM
Mali GPUs

With GPU Coder, you can generate optimized code for prediction of a variety of trained deep learning
networks from Deep Learning Toolbox. The generated code implements the deep convolutional neural
network (CNN) by using the architecture, the layers, and parameters that you specify in the input
SeriesNetwork or DAGNetwork object. The code generator takes advantage of the ARM Compute
Library for computer vision and machine learning. For performing deep learning on ARM Mali GPU
targets, you generate code on the host development computer. Then, to build and run the executable
program move the generated code to the ARM target platform. For example, HiKey960 is one of the
target platforms that can execute the generated code.

Requirements
1 Deep Learning Toolbox.
2 Deep Learning Toolbox Model for MobileNet-v2 Network support package.
3 GPU Coder Interface for Deep Learning Libraries support package. To install the support

packages, select the support package from the MATLAB Add-Ons menu.
4 ARM Compute Library for computer vision and machine learning must be installed on the target

hardware. For information on the supported versions of the compilers and libraries, see
“Installing Prerequisite Products”.

5 Environment variables for the compilers and libraries. For more information, see “Environment
Variables”.

Load Pretrained Network
1 Load the pretrained MobileNet-v2 network. You can choose to load a different pretrained

network for image classification. If you do not have the required support packages installed, the
software provides a download link.

net = mobilenetv2;
2 The object net contains the DAGNetwork object. Use the analyzeNetwork function to display

an interactive visualization of the network architecture, to detect errors and issues in the
network, and to display detailed information about the network layers. The layer information
includes the sizes of layer activations and learnable parameters, the total number of learnable
parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(net);

4 Deep Learning

4-36

https://developer.arm.com/technologies/compute-library
https://developer.arm.com/technologies/compute-library
https://developer.arm.com/technologies/compute-library

3 The image that you want to classify must have the same size as the input size of the network. For
GoogLeNet, the size of the imageInputLayer is 224-by-224-by-3. The Classes property of the
output classificationLayer contains the names of the classes learned by the network. View
10 random class names out of the total of 1000.

classNames = net.Layers(end).Classes;
numClasses = numel(classNames);
disp(classNames(randperm(numClasses,10)))

 cock
 apiary
 soap dispenser
 titi
 car wheel
 guenon
 muzzle
 agaric
 buckeye
 megalith

For more information, see “List of Deep Learning Layers” (Deep Learning Toolbox).

Code Generation by Using cnncodegen
To generate code with the ARM Compute Library, use the targetlib option of the cnncodegen
command. The cnncodegen command generates C++ code for the SeriesNetwork or DAGNetwork
network object.

 Code Generation for Deep Learning Networks Targeting ARM Mali GPUs

4-37

1 Call cnncodegen with 'targetlib' specified as 'arm-compute-mali'. For example:

net = googlenet;
cnncodegen(net,'targetlib','arm-compute-mali','batchsize',1);

For 'arm-compute-mali', the value of batchsize must be 1.

The 'targetparams' name-value pair arguments that enable you to specify Library-specific
parameters for the ARM Compute Library is not applicable when targeting ARM Mali GPUs.

2 The cnncodegen command generates code, a makefile, cnnbuild_rtw.mk, and other
supporting files to build the generated code on the target hardware. The command places all the
generated files in the codegen folder.

3 Write a C++ main function that calls predict. For an example main file that interfaces with the
generated code, see “Deep Learning Prediction on ARM Mali GPU”

4 Move the generated codegen folder and other files from the host development computer to the
ARM hardware by using your preferred Secure File Copy (SCP) and Secure Shell (SSH) client.
Build the executable program on the target.

Generated Code

The DAG network is generated as a C++ class (CnnMain) containing an array of 103 layer classes.
The code generator reduces the number of layers is by layer fusion optimization of convolutional and
batch normalization layers. A snippet of the class declaration from cnn_exec.hpp file is shown.

cnn_exec.hpp File

class CnnMain
{
 public:
 int32_T batchSize;
 int32_T numLayers;
 real32_T *inputData;
 real32_T *outputData;
 MWCNNLayer *layers[103];
 private:
 MWTargetNetworkImpl *targetImpl;
 public:
 void presetup();
 void allocate();
 void postsetup();
 CnnMain();
 void setup();
 void deallocate();
 void predict();
 void cleanup();
 real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
 real32_T *getInputDataPointer();
 real32_T *getOutputDataPointer();
 ~CnnMain();
};

• The setup() method of the class sets up handles and allocates memory for each layer of the
network object.

• The predict() method invokes prediction for each of the 103 layers in the network.

4 Deep Learning

4-38

• The cnn_exec.cpp file contains the definitions of the object functions for the CnnMain class.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For instance, files cnn_CnnMain_Conv*_w and cnn_CnnMain_Conv*_b correspond to
weights and bias parameters for the convolutional layers in the network. The code generator
places these binary files in the codegen folder. The code generator builds the library file cnnbuild
and places all the generated files in the codegen folder.

Limitations
• Code generation for the ARM Mali GPU is not supported for a 2-D grouped convolution layer that

has the NumGroups property set as 'channel-wise' or a value greater than two.

See Also
cnncodegen | coder.loadDeepLearningNetwork

More About
• “Supported Networks and Layers” on page 4-4
• “Load Pretrained Networks for Code Generation” on page 4-15
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Deep Learning Prediction on ARM Mali GPU”

 Code Generation for Deep Learning Networks Targeting ARM Mali GPUs

4-39

Data Layout Considerations in Deep Learning
When you build an application that uses the generated CUDA C++ code, you must provide a CUDA C
++ main function that calls the generated code. By default, for code generation of source code, static
libraries, dynamic libraries, and executables by using the codegen command, GPU Coder generates
example CUDA C++ main files (main.cu source file and main.h header file in the examples
subfolder of the build folder). This example main file is a template that helps you incorporate
generated CUDA code into your application. The example main function declares and initializes data,
including dynamically allocated data. It calls entry-point functions but does not use values that the
entry point functions return.

When generating code for deep convolutional neural networks (CNN), the code generator takes
advantage of NVIDIA cuDNN, TensorRT for NVIDIA GPUs or the ARM Compute Library for the ARM
Mali GPUs. These libraries have specific data layout requirements for the input tensor holding
images, video, and any other data. When authoring custom main functions for building an application,
you must create input buffers that provide data to the generated entry-point functions in the format
expected by these libraries.

Data Layout Format for CNN
For deep convolutional neural networks (CNN), a 4-D tensor descriptor is used to define the format
for batches of 2-D images with the following letters:

• N – the batch size
• C – the number of feature maps (number of channels)
• H – the height
• W – the width

The most commonly used 4-D tensor formats is shown, where the letters are sorted in decreasing
order of the strides.

• NCHW
• NHWC
• CHWN

Of these, GPU Coder uses the NCHW format (column-major layout by default). To use row-major layout
pass the -rowmajor option to the codegen command. Alternatively, configure your code for row-
major layout by modifying the cfg.RowMajor parameter in the code generation configuration object.

. For example, consider a batch of images with the following dimensions: N=1, C=3, H=5, W=4. If the
image pixel elements are represented by a sequence of integers, the input images can be pictorially
represented as follows.

4 Deep Learning

4-40

When creating the input buffer in the main function, the 4-D image is laid out in the memory in the
NCHW format as:

1 Beginning with the first channel (C=0), the elements are arranged contiguously in row-major
order.

2 Continue with second and subsequent channels until the elements of all the channels are laid out.
3 Proceed to the next batch (if N > 1).

Data Layout Format for LSTM
A long short-term memory (LSTM) network is a type of recurrent neural network (RNN) that can
learn long-term dependencies between time steps of sequence data. For LSTM, the data layout format
can be described with the following letters:

• N – the batch size
• S – the sequence length (number of time steps)
• d – the number of units in one input sequence

 Data Layout Considerations in Deep Learning

4-41

For LSTM, GPU Coder uses the SNd format by default.

See Also
cnncodegen | codegen | coder.CuDNNConfig | coder.TensorRTConfig |
coder.loadDeepLearningNetwork

More About
• “Supported Networks and Layers” on page 4-4
• “Load Pretrained Networks for Code Generation” on page 4-15
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs” on page 4-36
• “Lane Detection Optimized with GPU Coder”
• “Deep Learning Prediction by Using Different Batch Sizes”
• “Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform”

4 Deep Learning

4-42

Targeting Embedded GPU Devices

• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Relocate Generated Code to Another Development Environment” on page 5-14

You can use GPU Coder to generate CUDAcode for targeting embedded GPU platforms. Specifically,
you can target the NVIDIA Tegra development boards Jetson TX2, TX1, and TK1 on either Windows or
Linux systems.

5

Build and Run an Executable on NVIDIA Hardware
In this section...
“Learning Objectives” on page 5-2
“Tutorial Prerequisites” on page 5-2
“Example: Vector Addition” on page 5-2
“Create a Live Hardware Connection Object” on page 5-3
“Generate CUDA Executable Using GPU Coder” on page 5-3
“Run the Executable and Verify the Results” on page 5-5

Using GPU Coder and the GPU Coder Support Package for NVIDIA GPUs, you can target NVIDIA
DRIVE and Jetson hardware platforms. After connecting to the hardware platforms, you can perform
basic operations, generate CUDA executable from a MATLAB entry-point function, and run the
executable on the hardware.

Learning Objectives
In this tutorial, you learn how to:

• Prepare your MATLAB code for CUDA code generation by using the kernelfun pragma.
• Connect to the NVIDIA target board.
• Generate and deploy a CUDA executable on the target board.
• Run the executable on the board and verify the results.

Tutorial Prerequisites
Target Board Requirements

• NVIDIA DRIVE PX2 or Jetson TX1/TX2 embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if the target board cannot be

connected to a local network).
• NVIDIA CUDA toolkit installed on the board.
• Environment variables on the target for the compilers and libraries. For information on the

supported versions of the compilers, libraries, and their setup, see “Install and Setup
Prerequisites for NVIDIA Boards” (GPU Coder Support Package for NVIDIA GPUs).

Development Host Requirements

• NVIDIA CUDA toolkit on the host.
• Environment variables on the host for the compilers and libraries. For information on the

supported versions of the compilers and libraries, see “Third-party Products”. For setting up the
environment variables, see “Environment Variables”.

Example: Vector Addition
This tutorial uses a simple vector addition example to demonstrate the build and deployment
workflow on NVIDIA GPUs. Create a MATLAB function myAdd.m that acts as the entry-point for code

5 Targeting Embedded GPU Devices

5-2

generation. Alternatively, use the files in the “Getting Started with the GPU Coder Support Package
for NVIDIA GPUs” example for this tutorial. The easiest way to create CUDA code for this function is
to place the coder.gpu.kernelfun pragma in the function. When the GPU Coder encounters
kernelfun pragma, it attempts to parallelize the computations within this function and map them to
the GPU.

function out = myAdd(inp1,inp2) %#codegen
coder.gpu.kernelfun();
out = inp1 + inp2;
end

Create a Live Hardware Connection Object
The support package software uses an SSH connection over TCP/IP to execute commands while
building and running the generated CUDA code on the DRIVE or Jetson platforms. Connect the target
platform to the same network as the host computer or use an Ethernet crossover cable to connect the
board directly to the host computer. Refer to the NVIDIA documentation on how to set up and
configure your board.

To communicate with the NVIDIA hardware, you must create a live hardware connection object by
using the jetson or drive function. To create a live hardware connection object using the function,
provide the host name or IP address, user name, and password of the target board. For example to
create live object for Jetson hardware:

hwobj = jetson('192.168.1.15','ubuntu','ubuntu');

The software performs a check of the hardware, compiler tools, libraries, IO server installation, and
gathers peripheral information on target. This information is displayed in the command window.

Checking for CUDA availability on the Target...
Checking for NVCC in the target system path...
Checking for CUDNN library availability on the Target...
Checking for TensorRT library availability on the Target...
Checking for Prerequisite libraries is now complete.
Fetching hardware details...
Fetching hardware details is now complete. Displaying details.
 Board name : NVIDIA Jetson TX2
 CUDA Version : 9.0
 cuDNN Version : 7.0
 TensorRT Version : 3.0
 Available Webcams : UVC Camera (046d:0809)
 Available GPUs : NVIDIA Tegra X2

Alternatively, to create live object for DRIVE hardware:

hwobj = drive('92.168.1.16','nvidia','nvidia');

Note If there is a connection failure, a diagnostics error message is reported on the MATLAB
command window. If the connection has failed, the most likely cause is incorrect IP address or host
name.

Generate CUDA Executable Using GPU Coder
To generate a CUDA executable that can be deployed to a NVIDIA target, create a custom main file
(main.cu) and header file (main.h). The main file calls the code generated for the MATLAB entry-

 Build and Run an Executable on NVIDIA Hardware

5-3

point function. The main file passes a vector containing the first 100 natural numbers to the entry-
point function and writes the results to a binary file (myAdd.bin).

main.cu
//main.cu
// Include Files
#include "myAdd.h"
#include "main.h"
#include "myAdd_terminate.h"
#include "myAdd_initialize.h"
#include <stdio.h>

// Function Declarations
static void argInit_1x100_real_T(real_T result[100]);
static void main_myAdd();

// Function Definitions
static void argInit_1x100_real_T(real_T result[100])
{
 int32_T idx1;

 // Initialize each element.
 for (idx1 = 0; idx1 < 100; idx1++) {
 result[idx1] = (real_T) idx1;
 }
}

void writeToFile(real_T result[100])
{
 FILE *fid = NULL;
 fid = fopen("myAdd.bin", "wb");
 fwrite(result, sizeof(real_T), 100, fid);
 fclose(fid);
}

static void main_myAdd()
{
 real_T out[100];
 real_T b[100];
 real_T c[100];

 argInit_1x100_real_T(b);
 argInit_1x100_real_T(c);

 myAdd(b, c, out);
 writeToFile(out); // Write the output to a binary file
}

// Main routine
int32_T main(int32_T, const char * const [])
{
 // Initialize the application.
 myAdd_initialize();

 // Invoke the entry-point functions.
 main_myAdd();

5 Targeting Embedded GPU Devices

5-4

 // Terminate the application.
 myAdd_terminate();
 return 0;
}

main.h

//main.h
#ifndef MAIN_H
#define MAIN_H

// Include Files
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "myAdd_types.h"

// Function Declarations
extern int32_T main(int32_T argc, const char * const argv[]);

#endif

Create a GPU code configuration object for generating an executable. Use the coder.hardware
function to create a configuration object for the DRIVE or Jetson platform and assign it to the
Hardware property of the code configuration object cfg. Use the BuildDir property to specify the
folder for performing remote build process on the target. If the specified build folder does not exist
on the target, then the software creates a folder with the given name. If no value is assigned to
cfg.Hardware.BuildDir, the remote build process happens in the last specified build folder. If
there is no stored build folder value, the build process takes place in the home folder.

cfg = coder.gpuConfig('exe');
cfg.Hardware = coder.hardware('NVIDIA Jetson');
cfg.Hardware.BuildDir = '~/remoteBuildDir';
cfg.CustomSource = fullfile('main.cu');

To generate CUDA code, use the codegen command and pass the GPU code configuration object
along with the size of the inputs for and myAdd entry-point function. After the code generation takes
place on the host, the generated files are copied over and built on the target.

codegen('-config ',cfg,'myAdd','-args',{1:100,1:100});

Run the Executable and Verify the Results
To run the executable on the target hardware, use the runApplication() method of the hardware
object. In the MATLAB command window, enter:

pid = runApplication(hwobj,'myAdd');

Launching the executable on the target...
Executable launched successfully with process ID 26432.
Displaying the simple runtime log for the executable...

Copy the output bin file myAdd.bin to the MATLAB environment on the host and compare the
computed results with the results from MATLAB.

outputFile = [hwobj.workspaceDir '/myAdd.bin']
getFile(hwobj,outputFile);

 Build and Run an Executable on NVIDIA Hardware

5-5

% Simulation result from the MATLAB.
simOut = myAdd(0:99,0:99);

% Read the copied result binary file from target in MATLAB.
fId = fopen('myAdd.bin','r');
tOut = fread(fId,'double');
diff = simOut - tOut';
fprintf('Maximum deviation : %f\n', max(diff(:)));

Maximum deviation between MATLAB Simulation output and GPU coder output on Target is: 0.000000

See Also
drive | drive | jetson | jetson | killApplication | killProcess | openShell |
runApplication | runExecutable | system

More About
• “Build and Run an Executable on NVIDIA Hardware Using GPU Coder App” on page 5-7
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Stop or Restart an Executable Running on NVIDIA Hardware” (GPU Coder Support Package for

NVIDIA GPUs)
• “Run Linux Commands on NVIDIA Hardware” (GPU Coder Support Package for NVIDIA GPUs)

5 Targeting Embedded GPU Devices

5-6

Build and Run an Executable on NVIDIA Hardware Using GPU
Coder App

In this section...
“Learning Objectives” on page 5-7
“Tutorial Prerequisites” on page 5-7
“Example: Vector Addition” on page 5-8
“Custom Main File” on page 5-8
“GPU Coder App” on page 5-9
“Run the Executable and Verify the Results” on page 5-12

Using GPU Coder and the GPU Coder Support Package for NVIDIA GPUs, you can target NVIDIA
DRIVE and Jetson hardware platforms. After connecting to the target platform, you can perform basic
operations, generate CUDA executable from a MATLAB function, and run the executable on the
hardware. The support package automates the deployment of the generated CUDA code on GPU
hardware platforms such as Jetson or DRIVE

Learning Objectives
In this tutorial, you learn how to:

• Prepare your MATLAB code for CUDA code generation by using the kernelfun pragma.
• Create and set up a GPU Coder project.
• Change settings to connect to the NVIDIA target board.
• Generate and deploy a CUDA executable on the target board.
• Run the executable on the board and verify the results.

Before following getting started with this tutorial, it is recommended to familiarize yourself with the
GPU Coder App. For more information, see “Code Generation by Using the GPU Coder App”.

Tutorial Prerequisites
Target Board Requirements

• NVIDIA DRIVE PX2 or Jetson TX1/TX2 embedded platform.
• Ethernet crossover cable to connect the target board and host PC (if the target board cannot be

connected to a local network).
• NVIDIA CUDA toolkit installed on the board.
• Environment variables on the target for the compilers and libraries. For information on the

supported versions of the compilers, libraries, and their setup, see “Install and Setup
Prerequisites for NVIDIA Boards” (GPU Coder Support Package for NVIDIA GPUs).

Development Host Requirements

• NVIDIA CUDA toolkit on the host.

 Build and Run an Executable on NVIDIA Hardware Using GPU Coder App

5-7

• Environment variables on the host for the compilers and libraries. For information on the
supported versions of the compilers and libraries, see “Third-party Products”. For setting up the
environment variables, see “Environment Variables”.

Example: Vector Addition
This tutorial uses a simple vector addition example to demonstrate the build and deployment
workflow on NVIDIA GPUs. Create a MATLAB function myAdd.m that acts as the entry-point for code
generation. Alternatively, use the files in the “Getting Started with the GPU Coder Support Package
for NVIDIA GPUs” example for this tutorial. The easiest way to create CUDA code for this function is
to place the coder.gpu.kernelfun pragma in the function. When the GPU Coder encounters
kernelfun pragma, it attempts to parallelize the computations within this function and maps them
to the GPU.

function out = myAdd(inp1,inp2) %#codegen
coder.gpu.kernelfun();
out = inp1 + inp2;
end

Custom Main File
To generate a CUDA executable that can be deployed to a NVIDIA target, create a custom main file
(main.cu) and header file (main.h). The main file calls the code generated for the MATLAB entry-
point function. The main file passes a vector containing the first 100 natural numbers to the entry-
point function and writes the results to a binary file (myAdd.bin).

main.cu

//main.cu
// Include Files
#include "myAdd.h"
#include "main.h"
#include "myAdd_terminate.h"
#include "myAdd_initialize.h"
#include <stdio.h>

// Function Declarations
static void argInit_1x100_real_T(real_T result[100]);
static void main_myAdd();

// Function Definitions
static void argInit_1x100_real_T(real_T result[100])
{
 int32_T idx1;

 // Initialize each element.
 for (idx1 = 0; idx1 < 100; idx1++) {
 result[idx1] = (real_T) idx1;
 }
}

void writeToFile(real_T result[100])
{
 FILE *fid = NULL;
 fid = fopen("myAdd.bin", "wb");

5 Targeting Embedded GPU Devices

5-8

 fwrite(result, sizeof(real_T), 100, fid);
 fclose(fid);
}

static void main_myAdd()
{
 real_T out[100];
 real_T b[100];
 real_T c[100];

 argInit_1x100_real_T(b);
 argInit_1x100_real_T(c);

 myAdd(b, c, out);
 writeToFile(out); // Write the output to a binary file
}

// Main routine
int32_T main(int32_T, const char * const [])
{
 // Initialize the application.
 myAdd_initialize();

 // Invoke the entry-point functions.
 main_myAdd();

 // Terminate the application.
 myAdd_terminate();
 return 0;
}

main.h

//main.h
#ifndef MAIN_H
#define MAIN_H

// Include Files
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "myAdd_types.h"

// Function Declarations
extern int32_T main(int32_T argc, const char * const argv[]);

#endif

GPU Coder App
To open the GPU Coder app, on the MATLAB toolstrip Apps tab, under Code Generation, click the
GPU Coder app icon. You can also open the app by typing gpucoder in the MATLAB Command
Window.

1 The app opens the Select source files page. Select myAdd.m as the entry-point function. Click
Next.

 Build and Run an Executable on NVIDIA Hardware Using GPU Coder App

5-9

2 In the Define Input Types window, enter myAdd(1:100,1:100) and click Autodefine Input
Types, then click Next.

3 You can initiate the Check for Run-Time Issues process or click Next to go to the Generate
Code step.

4 Set the Build type to Executable and the Hardware Board to NVIDIA Jetson.

5 Click More Settings, on the Custom Code panel, enter the custom main file main.cu in the
field for Additional source files. The custom main file and the header file must be in the same
location as the entry-point file.

5 Targeting Embedded GPU Devices

5-10

6 Under the Hardware panel, enter the device address, user name, password, and build folder for
the board.

 Build and Run an Executable on NVIDIA Hardware Using GPU Coder App

5-11

7 Close the Settings window and click Generate. The software generates CUDA code and deploys
the executable to the folder specified. Click Next and close the app.

Run the Executable and Verify the Results
In the MATLAB command window, use the runApplication() method of the hardware object to
start the executable on the target hardware.

hwobj = jetson;
pid = runApplication(hwobj,'myAdd');

Launching the executable on the target...
Executable launched successfully with process ID 26432.
Displaying the simple runtime log for the executable...

Copy the output bin file myAdd.bin to the MATLAB environment on the host and compare the
computed results with the results from MATLAB.
outputFile = [hwobj.workspaceDir '/myAdd.bin']
getFile(hwobj,outputFile);

% Simulation result from the MATLAB.
simOut = myAdd(0:99,0:99);

5 Targeting Embedded GPU Devices

5-12

% Read the copied result binary file from target in MATLAB.
fId = fopen('myAdd.bin','r');
tOut = fread(fId,'double');
diff = simOut - tOut';
fprintf('Maximum deviation is: %f\n', max(diff(:)));

Maximum deviation between MATLAB Simulation output and GPU coder output on Target is: 0.000000

See Also
drive | drive | jetson | jetson | killApplication | killProcess | openShell |
runApplication | runExecutable | system

More About
• “Build and Run an Executable on NVIDIA Hardware” on page 5-2
• “Code Generation Using the Command Line Interface”
• “Code Generation by Using the GPU Coder App”
• “Code Generation for Deep Learning Networks by Using cuDNN” on page 4-17
• “Code Generation for Deep Learning Networks by Using TensorRT” on page 4-26
• “Stop or Restart an Executable Running on NVIDIA Hardware” (GPU Coder Support Package for

NVIDIA GPUs)
• “Run Linux Commands on NVIDIA Hardware” (GPU Coder Support Package for NVIDIA GPUs)

 Build and Run an Executable on NVIDIA Hardware Using GPU Coder App

5-13

Relocate Generated Code to Another Development
Environment

In this section...
“Package Generated Code Using the GPU Coder” on page 5-14
“Specify packNGo Options” on page 5-22

If you need to relocate the generated code files to another development environment, such as a
system or an integrated development environment (IDE) that does not include MATLAB, you can use
the packNGo function at the command line or the Package option in the GPU Coder app. The files
are packaged in a compressed file that you can relocate and unpack using a standard zip utility.

Because the code generated by using GPU Coder relies on third-party compilers, libraries to build
and run the executables, the development environment that you are relocating to must also satisfy
these requirements. For more information, see “Installing Prerequisite Products” and “Setting Up the
Prerequisite Products”.

Note GPU Coder requires that the 'minimalHeaders' option of the packNGo command is set to
false. This setting instructs the software to include all the header files found on the include path in
the zip file (rather than the minimal header files required to build the code). For example,
packNGo(buildInfo,'minimalHeaders',false).

Package Generated Code Using the GPU Coder
This example shows how to package generated code into a zip file for relocation using the Package
option in the GPU Coder app. The example uses a Sobel edge detection application to demonstrate
this concept. By default, GPU Coder creates the zip file in the current working folder.

Prerequisites

NVIDIA® CUDA® hardware, compilers, and libraries. For information on the supported versions of
the compilers and libraries, see “Third-party Products”. For setting up the environment variables, see
“Setting Up the Prerequisite Products”.

The Sobel Edge Detection Entry-Point Function

In the Sobel edge detection algorithm, a 2-D spatial gradient operation on a grayscale image is
performed. This operation emphasizes the high spatial frequency regions which corresponds to
edges.

type sobelEdge.m

function [magnitude] = sobelEdge(Image)
%#codegen

% Copyright 2017-2019 The MathWorks, Inc.

maskX = single([-1 0 1 ; -2 0 2; -1 0 1]);
maskY = single([-1 -2 -1 ; 0 0 0 ; 1 2 1]);

5 Targeting Embedded GPU Devices

5-14

coder.gpu.kernelfun();

resX = conv2(Image, maskX, 'same');
resY = conv2(Image, maskY, 'same');

magnitude = sqrt(resX.^2 + resY.^2);
thresh = magnitude < 0.4;
magnitude(thresh) = 0;

end

The Sobel edge algorithm computes the horizontal gradient (resX) and the vertical gradient (resY)
of the input image by using two orthogonal filter kernels (maskX and maskY). After the filtering
operation, the algorithm computes the gradient magnitude and applies a threhold to find the regions
of the images that are considered to be edges.

Run Sobel Edge Detection Algorithm on Test Image

The Sobel filtering algorithm operates on grayscale images. Convert the color image to an equivalent
grayscale image with normalized values (0.0 for black, 1.0 for white).

im = imread('hello.jpg');
imGray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;
imSize = size(imGray);
figure();
image(im);
title('Test Image');

 Relocate Generated Code to Another Development Environment

5-15

Write the matrix gray into the imputImage.csv file using the writematrix command. The Sobel
edge detection application reads in this CSV file.

writematrix(reshape(imGray,1,[]),'inputImage.csv');
imOut = sobelEdge(double(imGray));

To display the edge detected image, reformat the matrix imOut with the function repmat so that you
can pass it to the image command.

figure();
image(repmat(imOut,[1 1 3]));
title('Edge Detected Image in MATLAB');

5 Targeting Embedded GPU Devices

5-16

Create Custom Main Function for sobelEdge.m

This example uses a custom main file, main_sobel.cu and its associdated header file main_sobel.h.
This custom main file reads the input image from the inputImage.csv file, calls the sobelEdge
function in the generated sobelEdge.cu file, and saves the data from the edge detected image into
the outputMag.csv file.

Package Generated Code Using the GPU Coder App

Open the GPU Coder app. On the MATLAB Toolstrip Apps tab, under Code Generation, click the
GPU Coder app icon.

On the Select Source Files page, enter the name of the entry-point function sobelEdge.m. Click
Next to go to the Define Input Types page.

Specify that the input Image is of double data type and variable size with upper bound of 1024. To
specify variable size with an upper bound of 1024, select :1024. Click Next to go to the Check for
Run-Time Issues page.

 Relocate Generated Code to Another Development Environment

5-17

Check for run-time issues. In the Check for Run-Time Issues dialog box, enter code that calls
sobelEdge with double input. For example, sobelEdge(ones(648,484)). Click Check for
Issues. To check for run-time issues, the app generates and runs a MEX function. The app does not
find issues for sobelEdge. Click Next to go to the Generate Code page.

In the Generate dialog box, set the Build Type to Executable. You can also package the code
generated for Source Code, Static Library, or Dynamic Library targets. You cannot package the code
generated for MEX targets. Click More Settings.

On the Custom Code tab, under Custom C Code for Generated Files, set Additional source files
to main_sobel.cu. Click Close to go to the Generate Code page.

5 Targeting Embedded GPU Devices

5-18

Click Generate. Click Next to go to the Finish Workflow page. On the Finish Workflow page, click
Package.

 Relocate Generated Code to Another Development Environment

5-19

In the Package dialog box, specify the package file name and packaging type. By default, the app
derives the name of the package file from the project name. The app saves the file in the current
working folder. By default, the app packages the generated files as a single, flat folder. For this
example, use the default values, and then click Save.

This zip file contains the CUDA C++ code and header files required for relocation. It does not
contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile the example

main function.

Inspect the contents of sobelEdge_pkg.zip in your working folder to verify that it is ready for
relocation to the destination system. Depending on the zip tool that you use, you can potentially open

5 Targeting Embedded GPU Devices

5-20

and inspect the file without unpacking it. You can now relocate the resulting zip file to the desired
development environment and unpack the file.

Package Generated Code at the Command Line

To generate a CUDA executable for the sobelEdge function, create a GPU code configuration object
and run the codegen command.

cfg = coder.gpuConfig('exe');
cfg.GenerateReport = true;
cfg.CustomSource = 'main_sobel.cu';
codegen -config cfg sobelEdge -args {coder.typeof(0,[1024 1024],[1 1])}

Code generation successful: View report

To package the generated code into a zip file, load the BuildInfo object. The BuildInfo object
contains information for compiling and linking generated code, including the list of all the source and
include files and their paths.

buildInfoFile = fullfile(pwd,'codegen','exe','sobelEdge','buildInfo.mat');
load(buildInfoFile);

Create the zip file by using the packNGo function.

packNGo(buildInfo,'packType','flat','nestedZipFiles',true,...
 'minimalHeaders',false,'includeReport',false);

The packNGo function creates the sobelEdge.zip file in the current working folder. This zip file
contains the CUDA C++ code and header files required for relocation. It does not contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile the example

main function.

Inspect the contents of sobelEdge.zip in your working folder to verify that it is ready for relocation
to the destination system. Depending on the zip tool that you use, you can potentially open and
inspect the file without unpacking it. You can now relocate the resulting zip file to the desired
development environment and unpack the file.

Standalone Code Execution

When you execute the generated standalone executable, the output magnitudeData is computed
and written to a comma-separated file. Read this output back in MATLAB and use the image function
to visualize the edge detected image.

if ispc
 system('sobelEdge.exe');
else
 system('./sobelEdge');
end

imOutGPU = reshape(readmatrix('outputMag.csv'),imSize);
edgeImg = repmat(imOutGPU,[1 1 3]);
figure();

 Relocate Generated Code to Another Development Environment

5-21

image(edgeImg);
title('Edge Detected Image on the GPU');

Specify packNGo Options
You can specify options for the packNGo function.

To Specify
Change the structure of the file
packaging to hierarchical.

packNGo(buildInfo,'packType','hierarchical');

Change the structure of the file
packaging to hierarchical and rename
the primary zip file.

packNGo(buildInfo,'packType','hierarchical',.
..
'fileName','zippedsrcs');

Include all header files found on the
include path in the zip file (rather than
the minimal header files required to
build the code).

For GPU Coder, this option must be set
to false.

packNGo(buildInfo,'minimalHeaders',false);

Generate warnings for parse errors and
missing files.

packNGo(buildInfo,'ignoreParseError',
true,...
'ignoreFileMissing',true);

5 Targeting Embedded GPU Devices

5-22

For more information, see packNGo.

Choose a Structure for the Zip File

Before you generate and package the files, decide whether you want to package the files in a flat or
hierarchical folder structure. By default, the packNGo function packages the files in a single, flat
folder structure. This approach is the simplest and might be the optimal choice.

If Use
You are relocating files to an IDE that does not
use the generated makefile, or the code is not
dependent on the relative location of required
static files

A single, flat folder structure

The target development environment must
maintain the folder structure of the source
environment because it uses the generated
makefile, or the code depends the relative
location of files

A hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels of zip files. There is a
primary zip file, which in turn contains the following secondary zip files:

• mlrFiles.zip — files in your matlabroot folder tree
• sDirFiles.zip — files in and under your build folder where you initiated code generation
• otherFiles.zip — required files not in the matlabroot or start folder trees

Paths for the secondary zip files are relative to the root folder of the primary zip file, maintaining the
source development folder structure.

 Relocate Generated Code to Another Development Environment

5-23

	Functions Supported for GPU Code Generation
	MATLAB Language Features Support for GPU Coder
	Code Generation for Variable-Size Arrays
	Structure Definition for Code Generation
	Unsupported Features

	Supported Functions

	Kernel Creation
	Kernels from Element-Wise Loops
	Element-Wise Math Example
	Preparing myFun for Code Generation
	Generated CUDA Code
	Limitations

	Kernels from Scatter-Gather Type Operations
	Vector Sum Example
	Prepare vecSum for Kernel Creation
	Generated CUDA Code
	1-D Reduction Operations on the GPU

	Kernels from Library Calls
	cuBLAS Example
	Generated CUDA Code
	Prepare blas_gemm for Kernel Creation

	cuSOLVER Example
	Prepare backslash for Kernel Creation
	Generated CUDA Code
	cuSOLVER Standalone Code

	FFT Example
	Prepare myFFT for Kernel Creation
	Generated CUDA Code

	Thrust Example
	Generated CUDA Code

	Legacy Code Integration
	coder.ceval for GPU Coder
	Legacy Code Example
	Generate CUDA Code
	Generated Code

	Design Patterns
	Stencil Processing
	Matrix-Matrix Processing

	GPU Memory Allocation and Minimization
	Discrete and Managed Modes
	Memory Minimization

	Support for GPU Arrays
	Considerations

	Troubleshooting
	Workflow
	Code Generation Reports
	Report Generation
	Report Location
	Errors and Warnings
	Files and Functions
	MATLAB Source
	Generated Code
	MATLAB Variables
	Tracing Code
	Code Insights
	Additional Reports
	Report Limitations

	Trace Between Generated CUDA Code and MATLAB Source Code
	Generate Traceability Tags
	Format of Traceability Tags
	Traceability Tag Limitations

	Generating a GPU Code Metrics Report for Code Generated from MATLAB Code
	Example GPU Code Metrics Report
	Explore the code metrics report
	Limitations

	Kernel Analysis
	Mapping Nested Loops to Kernels
	For-Loops with Break
	Dependence Analysis Parallel Loop Check Fails
	Logical Indexing of Arrays
	Unsupported Functions
	Loop Interchange

	Memory Bottleneck Analysis
	Data Alignment
	Small Data Sizes
	Too Many cudaMemcpys
	Constant Inputs
	Stack Memory Usage

	Analyze Execution Profiles of the Generated Code
	Create a Design File
	Generate the Execution Profiling Report

	Analysis with NVIDIA Profiler
	Not Enough Parallelism
	Too Many Local per-Thread Registers

	GPU Coder Limitations
	General Limitations
	Function Limitations
	Unsupported CUDA Features

	Deep Learning
	Workflow
	Supported Networks and Layers
	Supported Pretrained Networks
	Supported Layers
	Supported Classes

	Generated CNN Class Hierarchy
	Load Pretrained Networks for Code Generation
	Load a Network by Using coder.loadDeepLearningNetwork
	Specify a Network Object for Code Generation

	Code Generation for Deep Learning Networks by Using cuDNN
	Generate Code and Classify Images by Using GoogLeNet
	Requirements
	Load Pretrained Network
	Create an Entry-Point Function
	Code Generation by Using codegen
	Generate Code by Using the App
	Code Generation by Using cnncodegen
	Generated Makefile
	Run the Generated MEX

	Code Generation for Deep Learning Networks by Using TensorRT
	Generate Code and Classify Images by Using GoogLeNet
	Requirements
	Load Pretrained Network
	Create an Entry-Point Function
	Code Generation by Using codegen
	Generate Code by Using the App
	Code Generation by Using cnncodegen
	Generated Makefile
	Run the Generated MEX

	Code Generation for Deep Learning Networks Targeting ARM Mali GPUs
	Requirements
	Load Pretrained Network
	Code Generation by Using cnncodegen
	Limitations

	Data Layout Considerations in Deep Learning
	Data Layout Format for CNN
	Data Layout Format for LSTM

	Targeting Embedded GPU Devices
	Build and Run an Executable on NVIDIA Hardware
	Learning Objectives
	Tutorial Prerequisites
	Example: Vector Addition
	Create a Live Hardware Connection Object
	Generate CUDA Executable Using GPU Coder
	Run the Executable and Verify the Results

	Build and Run an Executable on NVIDIA Hardware Using GPU Coder App
	Learning Objectives
	Tutorial Prerequisites
	Example: Vector Addition
	Custom Main File
	GPU Coder App
	Run the Executable and Verify the Results

	Relocate Generated Code to Another Development Environment
	Package Generated Code Using the GPU Coder
	Specify packNGo Options

